Showing posts with label News. Show all posts
Showing posts with label News. Show all posts

Tuesday, February 17, 2009

Biodiesel from Algae - The future of Biofuels

Biodiesel from Algae - The future of Biofuels

Biodiesel From Algae is likely a long term solution to the problems related to declining crude oil production and ever increasing prices.

Biofuels derived from Algae produce an Algae Oil are considered high quality and can be converted to an excellent biofuel. While all the technology is not yet in place to produce fuel on a mass scale, we are able to see that this is the direction we need to heading.

If you look at yield as a measure of viability, an acre of corn can produce approximately 20-30 gallons of Ethanol or 1,680,000 to 2,520,000 Btu's (84,000 Btu's per gallon) of energy; biodiesel derived from Soybean Oil produces approximately 70 gallons per acre or about 9,100,000 Btu's (130,000 Btu's per gallon), whereas biodiesel derived from Algae can produce up to 100,000 gallons or 13,000,000,000 (yes that's 13 Billion) Btu's (130,000 Btu's per gallon) from a single acre of non-arable desert.

As an oversimplified example if you converted 7,786,000 acres to the production of Algae Oil and converted that to biodiesel you could meet all of the fuel needs for transportation in the US. Note: This is about 10% of the size of New Mexico.

While this is likely a long way off, I believe our government and others in private industry should be investing in developing this technology as quickly as possible.

This technology can also be used to soak up huge amounts of CO2 and it leaves behind a biomass suitable for animal feed and many other possibilities.

Below, is a YouTube CNN video that shows some of this technology and how it can work.



We would appreciate your comments, questions, and ideas.

Diesel Doctor

Monday, February 16, 2009

PACKARD DIESEL ENGINE: Model DR-980 - 1928

PACKARD DIESEL ENGINE: PACKARD MODEL DR-980 of 1928

Type - 4-stroke cycle diesel

Cylinders - 9-static radial configuration

Cooling - Air

Fuel injection - Directly into cylinders at a pressure of 6000 psi

Valves - Poppet type, one per cylinder

Ignition - Compression-glow plugs for starting -air compression 500 psi at 1000 F.

Fuel - Distillate or "furnace oil"

Horsepower - 225 at 1950 rpm

Bore and stroke - 4 13/.16 x 6 in.

Compression ratio - 16:1---maximum combustion pressure 1500 psi

Displacement - 982 cu in.

Weight - 510 lb without propeller hub

Weight-horsepower ratio - 2.26 lb hp

Where manufactured - U.S.A.

Fuel consumption - .46 lb per hp/hr at full speed

Fuel consumption - .40 lb per hp/hr at cruising

Oil consumption - .04 lb per hp/hr

Outside diameter - 45 - 11/16 in.Overall length - 36 - 3/4 in.

Optional accessories - Starter---Eclipse electric inertia; 6 volt

Generator -Eclipse type G-1; 6 volts. Special Series no. 7


The specifications from SMITHSONIAN ANNALS OF FLIGHT,

The First Airplane Diesel Engine Packard Model DR-980 of 1928

Robert B. Meyer 1964

Sunday, February 15, 2009

Accidental Mixing of Gasoline and Diesel

Accidental Mixing of Gasoline and Diesel


Recently a customer of ours had a problem where their fuel supplier mistakenly unloaded 3000 gallons of ULSD#2 into their unleaded gasoline tank that contained about 700 gallons of gas.

When this happens there is very little that you can do beyond having the tank completely pumped out and then replacing the fuel.

Diesel in gasoline will generally cause the engine to either not start at all of run very poorly.

There is no acceptable amount of diesel in gasoline, although the engine will likely run if the amount of diesel is only 1 or 2% of total.

Gasoline in diesel is an equally serious problem. Even very small amounts (1%) can affect the flash point of the fuel significantly. This lowering of the fuels flash point can have catastrophic effects on the engine as it affects the fuels ignition and can also strip the lubricating ability of the diesel fuel, quickly damaging pumps and injectors.

In the past truck drivers would sometimes add a small amount of gasoline to their diesel fuel to try and prevent gelling. Many of these drivers feel that at long as the engine kept running it must be a good idea. It has never been a good idea for the reasons mentioned above and the fact that the engine kept running does not take into account increased wear and failures that happened days, weeks, or months later.

The addition of Ethanol to most gasoline available today simply makes using any amount of gasoline in diesel a very dangerous proposition.

In general, you should have this contaminated fuel taken away by a company licensed to handle it.

If you ever get gas in your diesel or diesel in your gas, the safest thing is to immediately without running the engine, have the tank drained and then replace with the correct fresh fuel.

Please let us know what you think and any experiences you may have had.

Diesel Doctor

Saturday, February 14, 2009

Snake Oil - The Good, the Bad and the Really Ugly

Snake Oil
The Good, the Bad, and the Really Ugly

As someone who has worked in the chemical business for a number of years, I always cringe when someone uses a term like “Mechanic in a Bottle” or “Snake Oil” to define the chemical industry in general and fuel additives in particular.

Unfortunately many of the companies out there today with products that do little or nothing and even worse those that actually cause more harm than good have given the industry a black eye

This has made it a real challenge for those of us that have dedicated their businesses to producing real products, that solve real problems, and produce real measurable results.

So here I want to offer some things to consider when you look at a new chemical product.

When you hear about a product claiming a 15% to 20% or more improvement in fuel economy, you should be skeptical.

We were recently asked to analyze and report on a product that made claims of improving fuel mileage by 10% to 17%, increasing horsepower, reducing hydrocarbon emissions, providing additional lubricity, and several more.

The only claim to involve any real numbers in all of their literature is the mileage claim, so let’s start there.

Cleaning up Combustion Chamber, Fuel Injector, and Valve Carbon Deposits does make a real difference in engine operation and efficiency. You can improve starting, drivability, fuel economy, and emissions by cleaning up those deposits.

In a very dirty engine you might be able to make an 8% to 10% improvement in fuel economy. However if you look at a fleet operation or an average individual engine you are realistically looking at a 3% to 5% improvement.

Friday, February 13, 2009

Ethanol/Gasohol Problems with 2 Cycle Engines

Ethanol/Gasohol Problems with 2 Cycle Engines

2 Cycle gasoline engines have new challenges when used with gas containing Ethanol.

A 2 cycle engine gets all of its internal lubrication from a special oil mixed with the gasoline. This premix of oil and gasoline can have serious problems when Ethanol is added to the gasoline. Lubricating oil normally creates a bond with the metal components of the engines. The oil molecules create a boundary layer that protects the metal and reduces friction.

When Ethanol is present it will actually get between the oil and the metal, preventing the boundary layer from forming. This results in little or no protection for the moving components, and little or no reduction in friction forcing the engine to work harder, run hotter, and often to destroy itself.

Also many small engines have plastic carburetors, fuel tanks, and other components that Ethanol can soften or dry out which will cause them to fail. Many rubber fuel lines, o-rings, gaskets, and other parts can be delaminated or turned to a gelatin like material often failing very quickly.

Storing this type of equipment with Gasohol (Ethanol blended fuel) can lead to catastrophic failure in a relatively short time.

There are a very small number of additives that can reduce the negative characteristics of Ethanol in the gas.

We recommend that everyone operating 2 cycle engines switch to a pure synthetic two cycle oil.
The synthetic oil will provide the boundary layer lubrication in spite of the Ethanol.

Please add your comments to this post.

Thursday, February 12, 2009

Ultra-Low Sulfur Diesel Cold Weather Information

Ultra-Low Sulfur Diesel Fuel
Cold Weather Information

The Ultra-Low Sulfur Diesel (ULSD (S-15)) that we started to receive in mid 2006 has shown some dramatically different cold weather characteristics from the earlier High Sulfur (HSD (S-5000)) and Low Sulfur Fuels (LSD (S-500)).

These new characteristics including higher temperature gelling, wax dropout, icing, and difficulty in treating have in the first year and will continue into the foreseeable future to provide some significant challenges to distributors and end users during cold weather.

Due to these new characteristics users in areas of the US where they have not seen cold weather problems in the past, are now and will continue to see serious issues with gelling, wax dropout, and icing.

Here are the main issues known today:

Wax in diesel fuels – Paraffin wax is a natural and important part of diesel fuel. This wax provides several beneficial characteristics including high energy content (Btu’s), lubricity, stability, and viscosity. The negative characteristics mainly revolve around cold weather operation and include gelling and something new we refer to as wax dropout.

In HSD and LSD the wax characteristics were relatively well understood and consistent. For example the “Rule of Thumb” used for adding kerosene (#1 diesel, Jet A) to #2 fuel to lower Cold Filter Plug Point (CFPP) was that for every 10% kerosene added to #2 diesel you would lower CFPP by approximately 5°F. An example would be that a 50% blend would have improved CFPP by about 25°F.

However the new ULSD has had several important characteristics changed by the new refining processes. The catalytic cracking and hydrodesulfurization processes remove some of the wax, it alters the size and shape of the wax seed crystals in the fuel, lowers the aromatic content of the fuel, removes a significant amount of the Lubricity, and lowers the fuels ability to dissipate static electricity by as much as 100 times.

The result of this is that the ULSD fuel actually will gel at a higher temperature than the old LSD and HSD. This problem is made more difficult because we can no longer use regular kerosene (#1 diesel, Jet A) for cold weather blending. These fuels are considered High Sulfur and their use would cause the end fuel to have sulfur content higher than the allowable 15 ppm. So refiners have had to create an ULSD #1 specifically for winter blending purposes.

There are a number of problems with this new fuel. First, it is currently very expensive, ranging anywhere from $.30 to $1.00 more than regular kerosene, second it is not available in all areas, and third this new ULSD #1 is not as effective at lowering the Cloud Point (CP) and CFPP (gel point) of the fuel. For example; ULSD #2 when blended with 10% ULSD #1 will lower the CFPP by only 2°F or maybe 3°F. This means that a 50% blend would only improve CFPP by 10°F.

To make this problem even more difficult, many of the diesel fuel anti-gel additive products that have been on the market for last 5 to 30 years have little or no effect on ULSD. The change in fuel chemistry brought about by changes in the Catalytic Cracking processes and the addition of Hydrodesulfurization have rendered many of the most popular products nearly useless in ULSD.

There is a new cold weather problem that the industry has not adequately defined
as of today. We are calling this issue “Wax Dropout”. Wax Dropout occurs when diesel fuel is “cold saturated”. This where the fuel reaches a given temperature and stays at or below that temperature for a given period of time. This time period is usually between 48 and 72 hours or longer and the temperature can vary with different batches of fuel. This past winter we saw this problem at between 5°F and 10°F.

When the fuel gets to the Wax Dropout temperature, say for example 8°F and stays there for 48 to 72 hours, the wax will suddenly agglomerate and fall to the bottom of the container. This wax plugs filters and fuel lines until it is removed or until the fuel temperature is raised to a point where the fuel will reabsorb the wax.

Again there is a further complication, in that the “old” HSD and LSD wax would gradually start to reabsorb as the fuel temperature rose. With ULSD when wax dropout has occurred the wax does not begin to reabsorb until the fuel reaches fairly high temperatures, often above 40°F, 50°F or even higher. This can make the process of getting an engine with gelled fuel to run properly far more challenging than we have ever seen before.

In the fuel distribution and fleet operations businesses, we have relied on CFPP as
a measure of winter fuel quality for many years. CFPP is a fairly complicated test involving using a vacuum to draw a sample of fuel through a 45 um (micron) screen within a given period of time.

When the HSD and LSD were most prevalent and most fuel filters were 10 um there was a good correlation between CFPP and the temperature at which a standard fuel filter would plug. For example you could be relatively certain that a fuel testing for CFPP of -25°F would provide trouble free operation to -15°F to -20°F.

However the relationship is much different with ULSD. A ULSD fuel testing
-25°F CFPP might have filter plugging problems at between -5°F and -10°F. Also CFPP does not seem to be directly related to Wax Dropout. A fuel can test for
-15°F and still have Wax Dropout at 8°F.

Furthermore, OEM engine manufacturers have changed the media size of their fuel filters. Where 10 um has been almost an industry standard, we now see 7 um, 5 um, and even 2 um filters today. This throws the whole relationship between CFPP and winter operability out the window. For example fuel that is at the CP can have filter plugging problems with a 2 um fuel filter.

The industry has not yet agreed on or developed testing methods to measure cold weather operability with the new fuels and filters.

Until such time as the industry develops a test method for determining the relationship between CFPP, PP, Wax Dropout, and filter media size for ULSD, we suggest the following: For 10 um filters; Take the midpoint between PP and CFPP, for 7 um filters, take the midpoint between PP and CFPP, then take the midpoint between that number and the original CP, for 5 um and 2 um use the CP.

Water is more of a problem than ever before. Diesel and biodiesel fuels hold
water dissolved in them. The amount of water that ULSD is able to hold is greater than that of HSD or LSD. One of the characteristics of fuel is that its ability to hold water in solution diminishes as the temperature decreases. Fuel delivered at 70°F with 200 ppm of dissolved water will as the temperature drops begin to push that water out of the fuel into droplets. These droplets can be seen floating in the fuel and as temperatures reach and go below 32°F those droplets freeze becoming ice crystals.

As a result many of the cold weather problems where people believe they have fuel gelling problem are actually a fuel icing problem. If you have operability issues in temperatures above 0°F you should check to be sure that you aren’t dealing with ice.

Customers are regularly reporting situations where they have no water in storage tanks, no water in vehicle or equipment tanks, but they constantly have water in filters and separators. This is due to the dissolved water falling out of solution due to temperature changes.

Wednesday, February 11, 2009

Long Term Fuel Storage

Long Term Fuel Storage


STORAGE LIFE

Under normal storage conditions diesel fuel can be expected to stay in a useable condition for:

9-12 months or longer at an ambient of 70ºF.

6-12 months at an ambient temperature higher than 85ºF.

Note: There are many factors that will affect storage life, including but not limited to:

· Ambient temperature

· Temperature variation - the wider the range, the more likely you are to have problems

· Above-Ground versus In-Ground Storage

· Dissolved water content of the fuel

· Humidity

· Quality of the fuel when added to tank

· Condition of storage tank

· Materials used in the tank and fuel piping system

As diesel gets older, fine sediment and gums will form in the fuel brought about by a chemical reaction between components in the diesel fuel with oxygen from the air. The fine sediment and gums can block fuel filters, leading to fuel starvation and the engine stopping. Frequent filter changes are then required to keep the engine going. The gums and sediments do not burn completely in the engine and this incomplete combustion can lead to carbon and soot deposits on injectors and other combustion surfaces.

The expected life of a diesel fuel can be indicated by the oxidation stability test ASTM D2276. The test measures how much gum and sediment will be deposited after keeping the fuel at 120°C in the presence of oxygen for 16 hours. It roughly corresponds to one year storage at 25°C. A result of less than 20mg/L of sediment and gum after the test is considered acceptable for normal diesel.


ACCELERATED AGING

The aging process can be accelerated by the following conditions:

• Contact with zinc, copper or metal alloys containing them. These metals will quickly react with diesel fuel to form unstable compounds.

• The presence of water. Water allows the growth of fungus and bacteria, these produce natural by-products such as organic acids which make the fuel unstable.

• Exposure to high temperatures.

• Exposure to dust and dirt which contain trace elements that can destabilize the fuel, such as copper and zinc.

• Fuel composition. Some components in diesel fuel naturally age quickly.


PROLONGING THE STORAGE LIFE

Prolonging the storage life is achieved by removing or controlling the conditions described in the previous section. Important measures to take are as follows:

• Ensure that the fuel is not in contact with any surfaces containing zinc or copper or compounds containing those metals (e.g. brass). If those metals are present then a metal deactivator additive may help.

• Establish a regular fuel maintenance program to ensure that water and dirt is removed from storage tanks. This will also remove any chance for fungus to grow.

• Water should be drained from the storage tanks weekly. The frequency can be extended if the tank shows no tendency to collect water but should be done at least monthly.

• Tanks should be kept full to reduce the space for water to condense, maintaining tanks half full increases the water build up and promotes corrosion in the top half of the tank. Most water will come from condensation as the tank breathes. The rate at which water collects will depend on local climate and will be higher in hot humid coastal areas.

• Tanks if possible should have a well defined low point where water will collect and can be drained. For example, cone down bottoms.

• Establish a system for filtering the contents of the main storage tank through a recirculating filter system. This can be made automatic and will reduce the potential for problems by removing sediment and gums. The filters should be checked and changed at regular intervals. When the filter change interval reaches a certain frequency then the fuel should be changed over.

• Tanks should be emptied and cleaned at least once every 10 years, or more frequently if there is a major contamination.

• Ensure that the fuel supplied conforms to a recognized specification to ensure the fuel matches the winter cloud point for the area to avoid filter blocking by wax drop out in cold weather.

• Always purchase fuel to replenish stocks in the winter season November - March. This will help to ensure that the fuel will not cause wax problems whatever season it is used.

• Obtain assurances from the supplier that all components are fully refined to promote stability.

• Establish a monitoring program whereby samples are taken at regular intervals to monitor the condition of the fuel. The samples can be examined at the site visually for evidence of haziness, sediment, darkening or sent to a laboratory for testing.

• Regularly turn the fuel over. If possible, plan the fuel usage so that it will all be used within 1-5 years and replaced with fresh fuel.


ADDITIVES TO IMPROVE STORAGE LIFE

The following additives can improve fuel storage life:

• Metal deactivators. These work by stopping copper, zinc and other reactive metals from reacting with the fuel.

• Fungicides/Biocides. These work by stopping fungus and bacteria from growing in the fuel and so prolong the life of the fuel. They are only effective on fungus and bacteria and will not stop other oxidation reactions from taking place. They are normally active at the water fuel interface where the fungus and bacteria grow. If fungus is present then a kill dose is required. Otherwise a maintenance dose is used to stop fungus growing.

The disadvantages of biocides are:

• Handling and mixing is hazardous because they are poisons.

• When using a kill dose, it is important to remember that killing the fungus can lead to a buildup of dead matter which will block filters and also cause the fuel to oxidize.

• Ideally, the fungus should be killed and then the tank emptied and drained out.

• Maintenance doses are effective but no more so than regular water draining and or the use of a Water Dispersant.

• Disposal of water bottoms requires special handling with due regard to the environment.

• Anti-Oxidants. These work by stopping the oxidation processes from taking place. They prevent the fuel oxidizing and reduce the formation of sediment and gum.

As always, your questions and comments are welcomed and encouraged

Oxygen (O2) Sensor and Catalytic Converter Failure Problems

Oxygen (O2) Sensor and Catalytic Converter Failure Problems


Oxygen sensors (O2) used in most of today's automotive gasoline engines are failing at an ever increasing rate.

There can be one to five sensors per vehicles and having them replaced can cost a consumer $100.00 to over $300.00 each.

Also, they rarely fail together, which means a customer can have one replaced and be back next month or even next week to have another done. This can go on and on until the customer takes their business elsewhere.

This can happen in brand new vehicles with low mileage or older high mileage ones.

Vehicles such as ambulances, police cars, and service equipment that have long idle periods and or a high percentage of idle time; and vehicles used for short trips are most susceptible to these problems.

Interestingly, most of these "failed" sensors are not actually defective or even worn out. What has happened, is that a small amount Ethanol in the gasoline (gasohol) will get past the piston rings and into the motor oil.

The Ethanol with agitation and heat liberates some of the phosphorus from the motor oil. This phosphorus is vaporized and sucked into the Positive Crankcase Ventilation (PCV) system and burned in the combustion chamber. This burned phosphorus on its way out the exhaust coats the O2 sensor(s) building up in layers.

This phosphorus coating acts as a insulation causing the sensor to react slower than normal. The engine computer reads this slow reaction time as a failure of the sensor forcing its replacement.

Note: This is the same material that coats catalytic converters causing them to go "cold" or cease to function.

Replacement of the sensor(s) is not the only option. It is possible to with a properly formulated chemical additive to clean up and remove this coating (both from O2 Sensors and Catalytic Converters) with a service procedure or with a tank additive.

The danger is that 98% of the additives on the market today are not properly formulated, and these poor quality products can actually make the problem worse, by permanently damaging the sensors or converters.

Remember; a well recognized brand name is no guarantee that it is a good product. Some of the biggest names are actually the poorest products.

It is also possible that with regular treatment, you can actually prevent these problems from ever happening in the first place.

Please comment on this and any of our other posts.

Tuesday, February 10, 2009

Fuel and Water - They Don't Go Together

Fuel and Water

They don't mix and you shouldn't try to make them.


One of the more interesting characteristics that is shared by diesel, biodiesel, gasoline, and gasohol is that all these fuels are hygroscopic.

Hygroscopy is the ability of a substance to attract water molecules from the surrounding environment through either absorption or adsorption.

Some examples of this phenomenon are that Ultra-Low Sulfur Diesel (ULSD) will hold approximately 2/10 of 1% dissolved water. This may not sound like much, but if you do the numbers they show that 2/10 of 1% equals 2 gallons of water dissolved in 1000 gallons of fuel. If you work backwards, that would equal 1 gallon of water in 500 gallons of fuel, or 1 quart (32 ozs.), in 125 gallons, or 1 pint (16 ozs.), in 62.5 gallons, down to about 8 ozs. in a 30 gallon tank.

That much water can cause severe corrosion of fuel system components such as injectors, pumps, connectors, and even metal fuel tanks.

That level of water speeds the oxidation and chemical breakdown of the fuel.

That level of water is enough to encourage the growth of bacteria and fungi.

One of the most insidious characteristics of water dissolved in fuel is that the fuels ability to hold water is dependent on temperature. Simply put the warmer the fuel (up to a point) the more water it hold.

What often happens is that fuel stored for example at 60°F will absorb that 2/10% water then as the fuel in a vehicle gets colder more and more of that water is pushed out of the fuel becoming liquid water droplets.

These droplets can collect in filters and if the temperature drops below 32°F those droplets turn to ice crystals quickly plugging filters and causing other problems.

Fuel at 28°F can hold approximately 1/2 as much water as fuel at 60°F.

This means that you can have clear fuel with no liquid water at 60°F and if the temperature drops sufficiently, you can have large amounts of free water suddenly appear as the temperature drops.

To make matters worse biodiesel can pickup and hold 10 times as much water as ULSD. So adding 2% or 5% biodiesel to regular diesel can dramatically increase the level of dissolved water.

Gasoline containing Ethanol suffers the same problem.

A 10% Ethanol blend can hold 3.8 teaspoons of dissolved water at 60°F.

However if more water is added or if the temperature drops significantly this fuel suffers a problem called "Phase Separation".

In Phase Separation the dissolved (or liquid) water binds to the Ethanol and this Water/Ethanol mixture will drop out of the fuel.

This has a series of negative affects on the fuel quality and can have catastrophic effects on engines.

We will discuss more about this later.

We look forward to your comments and questions.

Root Cause Failure Analysis

Root Cause Failure Analysis
Diesel fuel has been identified by at least one OEM as a Root Cause of Engine Fuel System (pump and injector), EGR, EGR Cooler, Sensor, and Turbocharger failures.

Ford Motor Company recently issued a new TSB (Technical Service Bulletin) regarding vehicles using the 6.0 Liter PowerStroke engine.

TSB 08-2-7 stating that “Some vehicles with a 6.0L diesel engine may exhibit white smoke, black smoke, lack of power, exhaust odor, surges, or no start as a result of excessive coking deposits (un-combusted or incompletely combusted hydrocarbons). The root cause of the coking must be corrected or the coking may reoccur”.

They further state: “Coking deposits are generally un-combusted or incompletely combusted hydrocarbons and can form on system components such as the EGR Valve, EGR Cooler, EBP Sensor, EBP Tube, Intake Manifold, Turbo Charger, Catalytic Converter, and EGR Throttle Plate”.

“Un-combusted deposits can be linked to delayed combustion events. Delayed combustion events can be a function of hard to ignite elements (poor quality fuel, excessive fuel, engine oil, or excessive exhaust gas recirculation) in the combustion chamber or a delayed injection event (calibration, wire chafe, injector mechanical issue (Sticktion)).

“Un-combusted fuel is usually evident as a fuel scented white exhaust smoke. Un-combusted fuel may create coking which impairs system functionality eventually leading to black exhaust smoke/poorly combusted fuel”.

In situations where injectors have built up carbon deposits to the point of not being able to properly atomize the fuel, or EGR Valves that have coked or “carboned” up to the point of no longer being able to regulate the Exhaust gas Recirculation, or EGR Coolers that have plugged, to Turbochargers coked to the point of no longer being able to vary their geometry; common practice has been to replace very expensive parts.

Later some companies developed systems to “flush” the EGR’s and Coolers. Flushing will temporarily improve the operation of the engine, however this type of repair lasts only a short time and the initial problems usually reoccurs.

Oftentimes the same parts are replaced many times and then you have the problem where the one part that is not functioning correctly causes other related parts to fail.
In these instances it is vitally important to determine the root cause of these failures. There is a suggested method to do this:

  1. Define the problem.

  2. Gather data/evidence.

  3. Ask why and identify the causal relationships associated with the defined problem.

  4. Identify which causes if removed or changed will prevent recurrence.

  5. Identify effective solutions that prevent recurrence, are within your control, meet your goals and objectives and do not cause other problems.
  6. Implement the recommendations.

  7. Observe the recommended solutions to ensure effectiveness.

Today the Root Cause of 80% to 85% of the diesel engine fuel system related problems is poor fuel quality and fuel characteristics.

In the case of the problems described above on the Ford 6.0L and most of the fuel system and related problems found with other diesel engines, the Root Cause of the Failure is poor fuel quality.
You can replace parts and flush till the cows come home and you will continue to have the same problems over and over and over again.

Note: Albert Einstein once described insanity as: “Doing the same thing over and over again and expecting different results”.

Ford has recommended the use of a Cetane Booster and Performance Improver to improve fuel quality and reduce coking and un-combusted fuel problems.

This is not a Ford only or PowerStroke only problem. Every engine manufacturer has to deal with these problems in one form or another.

Monday, February 9, 2009

UREA use in 2009 and 2010 Diesel Vehicles

Urea Use in 2009 Light Duty and 2010 Medium and Heavy Duty Diesels
Hold on, here comes the next big change in diesel engines. Starting with the automotive market in 2009 and then with virtually all of the medium and heavy duty diesel vehicles in the 2010 model year, diesel engined vehicles will require an additional fluid to operate.

These vehicles will require an “aqueous urea solution” as defined by ISO 22241-1 using test methods described in ISO 22241-2:2006. This is a solution of 32.5% Urea in deionized water.
This Urea solution is used as part of a Selective Catalytic Reduction (SCR) system to reduce the NOx emissions of diesel fueled engines.

These systems require that a tank of the Urea solution be installed on the vehicle. The Urea is meter injected into the exhaust stream after the turbocharger where the exhaust heat will convert it to ammonia which is then used by a special type of catalytic converter to significantly reduce the formation of NOx. This system will function as long as there is Urea available.

This is a complicated system with maintenance requirements, cold weather operability issues (Urea freezes), and quality concerns.

There is a wide ranging debate on what type of driver information systems are to be required, what will happen if the system runs out of the Urea solution, and where Urea will be available.

Sunday, February 8, 2009

Black Fuel Filters - Asphaltenes - Re-polymerization

Black Fuel Filters – Asphaltene Production and
Re-polymerization in ULSD Fuels
Have you seen filters that look like this.


There is a difficult new problem with ULSD fuels. Today most ULSD is derived using the process of catalytic cracking. This form of refining uses very high temperatures, high pressures, and chemicals known as catalysts to refine crude oils into various fractions including Ultra Low Sulfur Diesel. The fuels derived using these processes suffer from a wide range of problems including a lack of oxidative and thermal stability.

This lack of stability manifests itself in many ways including an increased ability to hold dissolved water, an increased negative reaction with oxygen, and a far greater inability to handle high temperatures over time. Different refining processes and catalysts can make these problems better or worse. It appears that certain refineries produce fuels which are far less stable than that of others.

Diesel engines recirculate fuel to lubricate and cool the fuel system and engine components, In the past fairly large volumes of fuel were recirculated and this tended to keep temperatures lower, generally in the 140°F to 160°F. Today some of the newer engines can heat that fuel to temperatures that can exceed 200°F or even 220°F.

When some catalytically derived fuel is exposed to temperatures above 100°F for extended periods of time such as when fuel is recirculated in a diesel engine, the catalytic process starts up again re-polymerizing parts of the fuel. This results in rapid deterioration and darkening of the fuel. In this process small droplets of asphaltenes (heavy oils) are formed.

When the fuel is again pumped from the tank, the fuel filters will pick up the tiny asphaltene droplets, agglomerating them until the filter or filters are plugged. This can happen in 3000 to 5000 miles with some instances of plugging in less than 1000 miles.

While there are additives that can add thermal and oxidative stability to fuels, they are not commonly used by refiners or fuel distributors. These additives are not found in most aftermarket additives.

Friday, February 6, 2009

Ethanol Marine Lawsuit

Ethanol Marine Lawsuit

BP, Chevron, ConocoPhillips, Exxon-Mobil, Shell Oil, and Tower Energy are being sued by a Florida boat owner who is trying to make it a class action for problems allegedly (read likely) caused by the Ethanol that was added under rules issued by the state of Florida.

This after similar lawsuits in California.

In this case the Ethanol is said to have damaged the fiberglass fuel tanks on many boats. It is understood that Ethanol will soften, breakdown, and dissolve certain types of fiberglass. This liberated fiberglass can then be carried by the fuel into the engine, damaging fuel pumps, carburetors, fuel injectors, intake systems, intake and exhaust valves, and so on.

These tanks can be damaged to the point of affecting their ability to hold fuel, resulting in leaking and the potential for fire and or explosion.

Also, consider that as these tanks are damaged by the ethanol they can be weakened to the point that it can have a material effect on hull and deck integrity.

Removing and replacing tanks can easily range from thousands to tens of thousands of dollars often approaching and even exceeding the value of the boat.

Furthermore the damage to fuel systems and or engines can be equally catastrophic.

However, the more significant question may be, if a government entity forces a private corporation(s) to alter their product against their will to meet a legal regulation or specification (note: the oil companies went to court in an effort to overturn the requirements to add ethanol and they lost), are these companies then responsible for damages caused by these changes.

Ethanol is reported to damage rubber components like o-rings and hoses, plastic tanks and fuel system components, aluminum, brass, copper and other "soft" metals.

We should also consider the damage being done to snowmobiles, motorcycles, lawnmowers, all 2 cycle engines, all seasonal equipment, to say nothing of all the non-flex fuel automobiles and trucks being fueled with ethanol blended gasoline's.

No good has ever or will ever come from politicians playing chemist. You cannot legislate chemistry.

Who will be responsible for the hundreds of millions in damages being done every day by these fuels?

We would like to hear how you feel about this and other fuel, oil, and coolant related issues.

Thursday, February 5, 2009

Biodiesel Confusion New Labeling Requirements

Biodiesel Confusion

The diesel fuel/biodiesel market has recently gotten a lot more confusing. We now have another Federal agency involved in the diesel fuel marketplace.

The Federal Trade Commission (FTC) has now created labeling requirements for diesel, biodiesel, and biomass based diesel.

These requirements have wide ranging consequences for all diesel fuel users.

First, diesel fuel may now contain up to 5% biodiesel or biomass-based diesel with no retail labeling required as long as the blended product meets ASTM D975 (note: ASTM D975 is being changed to allow up 5% biodiesel/biomass-based diesel to be blended as part of a diesel fuel).

Second, there are (according to the FTC) now two types of biodiesel, the first is the one most people are familiar with, where a plant, seed or animal derived oil is through transestrification converted to a Methyl Ester that is defined by ASTM D6751 and commonly referred to as biodiesel. The other is known as “Biomass-based Diesel”, this a fuel derived from biomass that does not contain Methyl Esters (note: there currently is not an ASTM specification for this product).

Third, effective December 16th, 2008, all retail fuel pumps are subject to the following labeling requirements based on Section 205 of the Energy Independence and Security Act of 2007 (EISA): Fuel blends containing no more than five percent (5%) biodiesel or no more than five percent (5%) biomass-based diesel and that meet ASTM D975 require no label.

Fuel blends containing more than five percent (5%), but no more than twenty percent (20%) biodiesel require a dispenser label 3”w x 2.5”h with a Blue background and a Bxx reporting the exact percentage or “Between B5 and B20” statement.

Fuel blends containing more than twenty percent (20%) biodiesel require a dispenser label with a Blue background and a Bxx reporting the exact percentage or “Containing more than 20% biodiesel statement.

Biodiesel that is “neat” or B100 must be labeled as “B100 Biodiesel” and “Contains 100 percent Biodiesel” on a Blue background.

Fuel blends containing more than five percent (5%), but no more than twenty percent (20%) biomass-based diesel require a dispenser label 3”w x 2.5”h with an Orange background and text reporting the exact percentage or “Between 5% and 20% Biomass-based Diesel” text statement.
Fuel blends containing more than twenty percent (20%) biodiesel require a dispenser label with an Orange background and text reporting the exact percentage or “Containing more than 20% Biomass-based Diesel” statement.Biomass-based Diesel that is “neat” or 100% must be labeled as “100% Biomass-based Diesel” on an Orange background.



Note: You should visit the FTC website at: http://www.ftc.gov/ at look at: 16 CFR Part 306 - RIN #3084-AA45 for more complete information on these requirements.

What this means in the real world is that suppliers can now add up to 5% biodiesel in retail fuels without notification to customers.

If you want biodiesel and have done your homework on what is required to successfully and safely use this fuel you should note what you want as you order your fuel.

If you do not want any biodiesel you should issue a written purchase order to your supplier telling them exactly what you want, e.g. no biodiesel.
Note: under the new ASTM D975 spec, 5% is allowed.

Wednesday, February 4, 2009

Diesel Fuel Mileage Decrease in Winter

Why Diesel Fuel Economy Drops in the Winter

Diesel fuel, particularly in the northern tier states changes rather significantly from season to season. In the cold weather months generally starting in September or October refiners begin to alter the chemical composition of diesel fuels to improve cold weather operability characteristics to meet ASTM, Pipeline Operator, and Customer requirements and specifications.

Refiners talk about the components that come out of the refining process as “streams”. In a typical refinery today there can be over 180 “streams” coming from the refining of crude oil. The addition of lighter product streams are known by names such as “aromatic chemicals”, “naptha’s”,” kerosene’s” and others to #2 diesel (whether Ultra-Low Sulfur Diesel (S-15) or Low Sulfur Diesel (S-500)) will lower (improve) the Cloud Point (CP), Cold Filter Plug Point (CFPP) commonly referred to as the gel point, and Pour Point (PP) depending on how much of those components are added to the base fuel. Refiners have a lot of latitude in determining how much of and what components are used to make these improvements.

The issue from a fleet operators standpoint is that these changes lower energy (Btu) content of the fuel. It is normal for fuel economy to decrease from one to as much as five percent seasonally. This decrease can be further exacerbated by fuel racks and or distributors further cutting with kerosene to try and improve cold weather operability. The normal energy content of #2 ULSD ranges between 138,000 and 140,000 Btu’s, kerosene is much lower ranging between 130,000 and 135,000 Btu’s, whereas gasoline is about 124,000 Btu’s per gallon.

As you can see the more lighter components added to fuel, the lower the energy content. Note: ULSD has 1%-3% lower Btu content than the LSD. This is primarily due to reduction in wax content in ULSD.

So if you put all of this together in a time line, you can see that you begin using additive to improve cold weather performance at the same time the refiners are blending the fuel in a way that reduces Btu content which lowers your fuel economy, then in the spring you stop using additive at the same time the refiners are going to a “summer” blend which increases the Btu content and so your mileage goes up.

Other cold weather considerations are more idle time, slower transit speeds, more time in traffic, and even driving through snow all, of which can have a significant negative impact on fuel usage.

Cold Filter Plug Point versus Cloud Point

CFPP (Cold Filter Plug Point) vs. CP (Cloud Point)
Cold Weather Operability in Diesel Fuels including ULSD


Traditionally the two main considerations for diesel fuel have been Cloud Point (CP) and Cold Filter Plug Point (CFPP).

Let’s start by defining the terms:

Cloud Point (CP) ASTM D2500 – This test determines the point where wax becomes visible in a fuel sample. This wax first appears as a floating cloudiness in a transparent fuel.

Cold Filter Plug Point (CFPP) ASTM D6371 – This test is a more complicated procedure involving using a vacuum to draw a 20cc fuel sample through a 45 micron screen within a 60 seconds.

There is usually but not always a spread between CP and CFPP of 2°F to 8°F.

CP is a first indicator of cold weather operability temperatures for diesel fuels. It is a visible indication of paraffin wax in diesel fuels. Prior to the introduction of Ultra-Low Sulfur Diesel (ULSD, S-15) into the US market, the importance of CP was often discounted by many due to fact that diesel engines could generally successfully operate at temperatures many degrees below the CP.

Up until the introduction of ULSD many if not most operators used CFPP to provide a reference temperature for cold weather operability with diesel fuels. This is however a complicated and imperfect test. As mentioned above, CFPP uses a vacuum to draw a sample of the fuel through a 45 micron screen within a given time. The point at which the sample fails to go through the screen in 60 seconds is the CFPP.

The main issue is that up until recently most fuel filters used a 10 micron filtering media. The significant difference 10 microns and 45 microns caused a disparity between the test and real world operations. However many in the industry felt that this differential was consistent and that provided a reliable guide for cold weather operability.

For example if you had a CFPP of -30°F, you could feel reasonably confident that you could operate to -20°F.

However three new factors need to taken into account due to changes in fuels and engines.

1. The new ULSD fuel does not appear to provide the same consistent differential between CP and CFPP as we had come to expect with High-Sulfur Diesel (HSD, S-5000) and Low-Sulfur Diesel (LSD, S-500).

2. The new phenomenon of Wax Drop Out (WDO) where under periods of extended “Cold Soak” (48-72+ hours) the wax in the fuel suddenly drops out of the fuel can happen at temperatures that can be above the CP. This problem appears at this time to be independent of CP or CFPP.

3. As diesel engines have become more sophisticated there has been a rise in fuel injection pressures. In order to obtain these higher pressures OEM’s have had to manufacture pump and injector parts to ever closer tolerances. Today many injectors have tolerances in the 2 micron range. These tight tolerances and the very high cost of making and replacing these components have caused manufacturers to use fuel filters with smaller media to protect these components. Where in the past fuel filters typically were 10 microns, today we are seeing filters of 7, 5, and even 2 microns.

This makes the problems associated with ULSD even more difficult. Cloudy fuel that would easily pass through a 10 micron filter can often plug a 5 or 2 micron filter. This makes correcting the cold weather operability issues of ULSD like hitting a moving target. Today you need to adjust your fuel treatment to reflect the engines and filter arrangements in your fleet.

We are now suggesting a formula based on both CP and CFPP. Take the difference between CP and CFPP, divide by 1.5 and add to the CFPP to get a safe operability number.

Example: CP = 8°F, CFPP = 3°F

The difference between 8 and 3 = 5, 5 x .75 = 3.75, Take the CFPP of 3 and add the 3.75 to it equaling 6.75°F. You could expect to reliably operate that fuel in an engine with a 7 to 5 micron filter at 6-7°F.

For those operating 2 micron filters we suggest using the CP of the fuel.

For those still able to operate with 10+ micron filters, we are suggesting a number half way between CP and CFPP.

It is important to remember that the traditional method of using Kerosene or Jet A to “cut” or blend with HSD or LSD to lower the CFPP and Pour Point (PP) is not as effective or reliable as it was in the past when using the new ULSD #1 to cut or blend with ULSD #2.

Tuesday, February 3, 2009

Use of Diesel Fuel Additives - Year Round

Use of Diesel Fuel Additives
or
Additives's it’s not just for winter anymore


Once upon a time diesel engines were relatively simple pieces of big heavy, hard to break iron. You could put almost anything from kerosene to heating oil in them and they would run, maybe not well, but they would run.

Diesel fuel was considered a residual fuel, something left over from making the good stuff (gasoline). It was not supposed to be a good fuel; it was supposed to be a cheap fuel.

Even if this fairy tale was ever true (it actually was not), those days are long, long gone. Diesel engines today are as sophisticated as those of the worlds fastest Formula One race cars. These engines can have fuel system pressures of up to 35,000 psi and injector machining tolerances of 2 microns or less. Fuel filters that used filter down to 30 or 10 microns, now regularly filter down to 7, 5, and even 2 microns.

The new Ultra Low Sulfur Diesel (ULSD) that is now on the market is derived using various Catalytic Cracking refining processes that affect the quality of the fuel on many levels. The “new” ULSD has less oxidative stability, holds more suspended water, forms gums, varnishes, and carbon deposits more quickly, has less lubricity, gels at higher temperatures, is less thermally stable, is more corrosive, and in general is much more problematic.

In short the quality of the fuel has not kept up with the sophistication of the engines.

As a result you can no longer expect untreated fuel to meet the needs of your engines.

It is no longer good enough to treat your fuel just when it is cold outside. The needs for additional lubricity, higher Cetane, water dispersion, higher levels of oxidative and thermal stability, fuel injector cleaning, corrosion inhibition, fuel atomization require continuous year-round treating to protect your equipment and to maximize performance.

Monday, February 2, 2009

Phase Separation in Ethanol Blended Gasoline

Phase Separation in Ethanol Blended Gasoline’s


Phase Separation in Gasoline’s containing Ethanol is now a major problem for all users of gasoline.

Whether you use gasoline as a fleet operator or for your family car, classic car, boat, personal water-craft, motorcycle, snowmobile, ATV, RV, lawnmower, weed-whacker, generator, or any of the thousands of other types of equipment that use gasoline engines; you are being affected by Ethanol in your fuel.

Phase Separation describes what happens to gasoline containing Ethanol when water is present. When gasoline containing even small amounts of Ethanol comes in contact with water, either liquid or in the form of humidity; the Ethanol will pick-up and absorb some or all of that water. When it reaches a saturation point the Ethanol and water will Phase Separate, actually coming out of solution and forming two or three distinct layers in the tank.

Phase Separation is also temperature dependent. For example, E-10 can hold approximately .05% water at 60°F. To better understand the amount of water that we are talking about, picture 1 gallon of E-10 at 60°F. This gallon will hold approximately 3.8 teaspoons of water. However if the temperature drops to 20°F it can only hold about 2.8 teaspoons of water.

We recently were called to consult for a fleet where a fairly large number of vehicles were being regularly fueled from a single tank and about one-half the vehicles were stored inside and the other half were stored outside. After a night with a 30°F+ temperature drop, several of the vehicles stored outside developed problems with significant amounts of water found in the vehicle tanks. After checking the storage tank and finding no measurable water, they looked for other possible causes including sabotage. After looking at many possible causes this customer consulted with us and we were able to describe the Phase Separation through temperature change scenario and determine that this was the most likely cause of the problems.

Phase Separation can happen in an underground or an aboveground storage tank, a vehicle tank, a boat tank, in any type of equipment tank, and even in the gas can in your garage.

When this happens, you can have serious and even catastrophic engine problems, without warning.

When this Phase Separation occurs you will have an upper layer of gasoline with a milky layer of Ethanol and Water below it, and then in many cases a third layer of just water at the bottom.

If this happens and you try to start the engine you can have one or more of the following problems. If your fuel tank pick-up tube is in the water layer, most likely the engine will fail to start. If the engine is running and suddenly draws water you can have damage from thermal shock or hydro-lock. If the pick-up tube draws the Ethanol-Water mixture or just Ethanol you can have problems where the engine will operate in an extreme lean condition, which can cause significant damage or even catastrophic failure. If the pick-up tube draws the gasoline, it will operate very poorly due to lower octane that is the result of no longer having the Ethanol in the fuel.

Gasoline containing Ethanol provides further challenges and dangers for marine operators (Boaters) and other users of seasonal equipment such as motorcycles, personal water-craft, snowmobiles, ATV’s, RV’s, yard maintenance, generators, and other equipment.

Ethanol is a strong, aggressive solvent and will cause problems with rubber hoses, o-rings, seals, and gaskets. These problems are worse during extended storage when significant deterioration will take place. Hoses will delaminate, o-rings will soften and break down, and fuel system components made from certain types of plastics will either soften or become hard and brittle, eventually failing. Fuel system components made from brass, copper, and aluminum will oxidize to the point of failure.

Operators of boats with fiberglass fuel tanks built before 1993 can have actual structural failure as Ethanol will break down and pick-up some of the materials the tanks are made from. This causes two separate but equally serious problems. First the tanks can become so weakened that they can fail. In cases where the tank is part of the boats structure we have seen tanks become so weak that it is possible to collapse part of the deck just by walking on it. The second problem is that this material when dissolved from the fiberglass tank is carried through the fuel system and can cause damage to carburetors and fuel injectors and can actually get into the combustion chambers causing damaging deposits on valves and pistons. This material can be nearly impossible to remove without destroying the affected parts.

Two-Cycle engines have a special problem with Ethanol blended fuels. Two-Cycle engines function because the oil added to the fuel bonds to the engines metal surfaces and provides barrier lubrication to all the parts requiring lubrication. When Ethanol is added to the gasoline, it displaces the oil and forms a primary bond with the metal surfaces. This bond provides virtually no lubrication and can result in significantly increased wear and even catastrophic failure in a very short amount of time.

Until now the only preventative measures available to tank operators and end users was to try and make sure there was no water in the tank and that vents allowed a minimum amount of airborne water (humidity) into the tank.

Gasohol, E-10, E-20, and E-85 are the terms that refer to gasoline containing Ethanol. For example the most common fuel available today is E10. E-10 is 10% Ethanol and 90% gasoline, while E-85 is 85% Ethanol and 15% gasoline (Note: E-85 is actually E-70 in the winter in cold weather (Northern Tier) states.

Ethanol has less energy (as measure in Btu’s – British Thermal Units) per gallon than does regular unleaded gasoline. This means that the more Ethanol found in fuel the worse your fuel economy will be. You use more gallons of fuel containing Ethanol to go fewer miles.

This poor fuel economy is made worse by other EPA and State requirements for fuels to change seasonally. Until very recently we have used what is known as “Conventional” gasoline (CVG) in the winter and “Reformulated gasoline (RFG) in the summer. The theory is that the lower volatility of RFG will reduce the formation of green house gases. However RFG has lower Btu’s per gallon. RFG together with Ethanol results in a significant mileage penalty. My own vehicle drops about 2 miles per gallon or about 9% when using RFG with Ethanol.

For many years the refining industry used a chemical called MTBE to meet the oxygenate requirements set forth by the EPA. Generally refiners used 15% MTBE and 85% gasoline. However MTBE has now been virtually eliminated in the US due to its carcinogenic compounds and the huge potential problems caused by its pollution of as much as 75% of the ground water in the US and Canada.

This has left Ethanol as the primary additive to meet Federal and State oxygenate mandates.

Further the federal government currently subsidizes Ethanol with a $.51 per gallon tax credit that goes to the refiners or blenders. With E-10 this provides those refiners and or blenders with a $.051 per gallon subsidy on every gallon of gasoline that they sell.

In many cases we have seen gasoline containing more than 10% Ethanol. We test regularly and have seen fuel containing 12%, 13%, and even 14% Ethanol while the pump shows only 10%. Increasing the amount of Ethanol increases the refiner/blenders subsidy and profit while further lowering your fuel economy.

One more concern with Ethanol and RFG or Ethanol and CVG is that Ethanol when mixed with water; they readily form Gums in the fuel system much quicker than gasoline without Ethanol. These Gums coat fuel system components including filters, carburetors, injectors, throttle plates; and will then form varnish and carbon deposits in the intake, on valves, and in the combustion chamber. These deposits can coat sensors and plug catalytic converters.

The good news is that we now have products available to prevent and control Phase Separation and that we can dramatically reduce or eliminate most of the problems caused by Ethanol in Gasoline.

Because of all the problems with Ethanol Blended gasoline’s we will list some specific suggestions and recommendations on how to deal with and resolve many of these problems.

When Phase Separation occurs in fuel tank on a vehicle, boat or other piece of equipment, the tank should be completely drained. The tank should be refilled with good fuel and the fuel line purged prior to restarting the engine.

For Seasonal vehicles and equipment, e.g. boats, personal water-craft, motorcycles, classic cars, ATV’s, RV’s, lawn and garden equipment, gasoline powered generators, and so on, we recommend that you try to use conventional gasoline without Ethanol whenever possible and particularly prior to storage.

In ALL Two-Cycle gasoline engines where there is any possibility that you are using gasoline containing Ethanol we strongly suggest using a full synthetic two-cycle oil in the gas.

In bulk storage tanks where you believe phase separation may have occurred or where you are concerned it may happen. We suggest the use of a modified water finding paste such is made by the Kolor Kut Company. This paste starts out brown, if you dip the tank with a measuring stick with the paste and it turns yellow (even light or spotty yellow), you have significant water dissolved in the fuel, if the paste turns red you have free water.

If you have fuel that has Phase Separated and you have either two or three layers you should arrange to have the tank pumped from the bottom to remove the one or two bottom layers containing the water and or the Ethanol/Water mix. (Note: you should check again with the paste before the technician leaves to be certain that all the Water and Water/Ethanol has been completely removed). You do not need to remove the gasoline. Check with water finding paste after 24 hours. If no red or yellow present then add clean fuel to the tank to working capacity.

If you have specific questions, please contact me here or at: fuelschool@roadrunner.com

Sunday, February 1, 2009

Winter Problems with Ultra-Low Sulfur Diesel (ULSD)

Winter Problems with Ultra-Low Sulfur Diesel (ULSD)


Which One of these Filters Would You Rather Have on Your Vehicle?

The above image is from February 5th 2007, the first real winter weather while using the “new” Ultra Low Sulfur Diesel (ULSD). After being told by refiners and many distributors that ULSD would be the “be all, end all” magic problem solver for all diesel engines, this is what really happened when it finally got cold and stayed cold for 48+ hours.

The red colored filter on the left is the result of a fuel distributor using so much anti-gel additive that it actually saturated the fuel to the point of completely plugging THOUSANDS of fuel filters over several days.

The filter on the right shows paraffin wax plugging it. This customer used ULSD #1 (ULSD Kerosene) to “cut” the ULSD #2 fuel. However the “new” ULSD #1 doesn’t work the same way as the “old” LSD Kerosene (see more below)

The new ULSD gels 4°F to 5°F sooner than the “old” Low Sulfur Diesel (LSD). The new ULSD is harder to treat for cold weather than the “old” LSD. Many additives that you have been using for years no longer work on the “new” ULSD. The “new” ULSD holds more dissolved water than the “old” LSD, causing ice formation as the temperature drops below freezing.

When treating with a cold flow improver (anti-gel), using the recommended treatment ratio provides a certain level of protection, using twice the recommended ratio may improve the gel point a little, however if you go beyond that level it will actually raise or worsen the gel-point. At treatment levels beyond 3-4 times the recommended ratio, you will begin to saturate the fuel and can actually plug a filter full of anti-gel additive. This is generally indicated by a reddish or pink colored wax-like substance covering the filter as much as ¼” thick. This wax-like substance will not readily melt at room temperature unlike paraffin wax that melts above 32°F.

In the past the general “Rule of Thumb” regarding using Kerosene (#1D) to “cut” #2 diesel was that for every 10% kerosene added to #2 diesel you would lower the Cold Filter Plug Point (CFPP) by approximately 5°F. So for example a 50%-50% blend of #2D and Kerosene would have lowered CFPP by approximately 25°F. The “new” ULSD #1 is far less aromatic and has much less solvency than did the old Kerosene. As a result the new ULSD #1 will only lower CFPP by 2°F-3°F. This means that a 50%-50% blend will only lower CFPP by 10°F to maybe 15°F.
If you have any comments or related incidents or problems, please post to this blog.

Doctor Diesel

Thursday, January 29, 2009

Biodiesel and Cold Weather Issues

We have recently seen a new cold weather problem related blended biodiesel fuels.
The problem has been seen with B5 and greater blends where the diesel portion has been treated with certain lubricity agents.
What is being seen is that when the stored fuel is cold (below 15F) for extended periods of time (generally 48 hours or more) the dispenser filters will plug with an orange colored material. When this fuel filter is removed and the fuel poured out into a container that will allow it to be viewed you see an orange cloud floating in the fuel. The colder it gets the more of this material is found in the filter.
This appears to be the result of the fuel becoming more viscous as it gets colder. As the fuel becomes thicker it will begin to reduce the pore size of the filter media. As the pore size gets smaller, the filter begins to filter out the lubricity additive and the filter will concentrate it until the restriction is such that little or no fuel will pass through the filter.
This is a separate issue from gelling. The fuel when tested can have a very good CFPP or LTFT number and still see this problem.
If anyone has seen this issue, please let me know and I can offer suggestions for how to deal with this problem.