Showing posts with label Ethanol. Show all posts
Showing posts with label Ethanol. Show all posts

Tuesday, March 3, 2009

E-Diesel – A Fuel for the Future?

E-Diesel – A Fuel for the Future?

Image Courtesy of University Of Illinois


E-Diesel is a blend of Ethanol and Diesel Fuel together with a multifunctional additive package. E-diesel is typically a 7% to 15 % blend of Ethanol in #2 diesel fuel together with 2% to 5% of additive. Early on it was referred to as “Oxygenated Diesel”, now however; most call it E-Diesel.

E-diesel is popular in Brazil as they produce a large amount of Ethanol from biomass left over from growing and processing sugar cane. Brazil has a limited supply of domestic crude oil and this has given them a huge incentive to develop alternative fuels and their government has stepped up to the plate to make it happen.

As a result Brazil is today an energy independent country, something we should aspire to become.

E-diesel has not been popular in the US, although it has been tested in some large fleets here with mixed results.

However the problems with Ultra-Low Sulfur Diesel, with Biodiesel being forced into our diesel and the recent very high price of fuel (now temporarily better) have made this technology worth another look.

E-diesel has a number of negative characteristics, it is hygroscopic (soaking up huge amounts of water if allowed to do so), Ethanol lowers the flash point of the diesel, Ethanol destroys lubricity in the fuel, and Ethanol makes the fuel less stable.

The pluses are that it improves cold weather characteristics, lowers CO and NOx, potentially (when derived from cellulosic biomass) lowers cost of the finished fuel, and increases the amount of non-petroleum renewable fuel available.

E-diesel using Ethanol produced from Bagass (the parts leftover from making sugar from sugar cane) is winner. Ethanol made from corn is a loser, the yield is very low, and it affects human and animal feedstocks.

The biggest winner is if you make diesel fuel from algae and use the biomass left over to produce Cellulosic Ethanol which can be burned in boiler, added to gasoline, or added to diesel. It is possible that Ethanol produced in this manner could cost as little as $1.00 per gallon.

The potential of producing a high quality cellulosic Ethanol from biomass is a game changer.

Ethanol in fuels presents significant problems in many areas. However these problems can be overcome or managed through changes in the way we handle fuels and blending, changes in equipment using these fuels, and though the use of properly formulated additive packages.

For more information please go to: http://www.lcbamarketing.com

Please comment with thoughts, ideas, and suggestions.


Diesel Doctor

Copyright 2009© - William Richards

Monday, March 2, 2009

Gasohol – Ethanol Blended Gasoline – How to Prevent Storage Problems

Gasohol – Ethanol Blended Gasoline – How to Prevent Storage Problems
Image Courtesy of JME Sales


One of the biggest problems with gasohol (Ethanol blended Gasoline) is that it is extremely hygroscopic (the ability to attract water molecules from the surrounding environment and to hold them either through absorption or adsorption.

E-10 Gasohol (Gasoline containing 10% Ethanol) can hold up to 3.8 teaspoons of water in solution in the fuel. This water can lead to corrosion, poor economy, drivability problems, and to phase separation leading to other much more serious problems.

To combat this hygroscopic problem it is vital that storage tanks be purged of all water before any fuel containing Ethanol is added. The use of dispersant additives to deal with any residual water is also beneficial.

Storage tanks will pick up water from condensation of moisture in the air due to the daily changes in temperature. A large storage tank can actually generate anywhere from several ounces to as much as a gallon of water per day. Normally this water would settle to the bottom of the tank; however the Ethanol will pick it up, blend with it, and hold it in suspension.

The addition of a Desiccant type filter in the vent system will dramatically reduce or eliminate this condensation. While this idea is relatively new in the US many other countries mandate the use of these filters to prevent water problems.

It is also vital to regularly check the storage tank with water finding paste to be certain that there is no separated water on the tank bottom. Another advantage to water finding paste is that it will begin to slightly change color or in some cases small colored dots will begin to appear on the paste. This indicates that the fuel mixture is approaching the saturation point where phase separation will happen.

Note: Many of the electronic monitoring systems used for tank water detection may not register properly with Ethanol blended fuels. Also we have seen many instances where the fuel tank sending unit becomes saturated with water and stops functioning properly. When this happens the device will show the last good reading indefinitely.

It should be expected that tanks containing Ethanol will require a significantly higher level of maintenance than those holding regular gasoline or diesel.
For more information on this and other fuel related issues visit: http://www.lcbamarketing.com

Diesel Doctor
Copyright 2009© - William Richards

Tuesday, February 17, 2009

Biodiesel from Algae - The future of Biofuels

Biodiesel from Algae - The future of Biofuels

Biodiesel From Algae is likely a long term solution to the problems related to declining crude oil production and ever increasing prices.

Biofuels derived from Algae produce an Algae Oil are considered high quality and can be converted to an excellent biofuel. While all the technology is not yet in place to produce fuel on a mass scale, we are able to see that this is the direction we need to heading.

If you look at yield as a measure of viability, an acre of corn can produce approximately 20-30 gallons of Ethanol or 1,680,000 to 2,520,000 Btu's (84,000 Btu's per gallon) of energy; biodiesel derived from Soybean Oil produces approximately 70 gallons per acre or about 9,100,000 Btu's (130,000 Btu's per gallon), whereas biodiesel derived from Algae can produce up to 100,000 gallons or 13,000,000,000 (yes that's 13 Billion) Btu's (130,000 Btu's per gallon) from a single acre of non-arable desert.

As an oversimplified example if you converted 7,786,000 acres to the production of Algae Oil and converted that to biodiesel you could meet all of the fuel needs for transportation in the US. Note: This is about 10% of the size of New Mexico.

While this is likely a long way off, I believe our government and others in private industry should be investing in developing this technology as quickly as possible.

This technology can also be used to soak up huge amounts of CO2 and it leaves behind a biomass suitable for animal feed and many other possibilities.

Below, is a YouTube CNN video that shows some of this technology and how it can work.



We would appreciate your comments, questions, and ideas.

Diesel Doctor

Sunday, February 15, 2009

Accidental Mixing of Gasoline and Diesel

Accidental Mixing of Gasoline and Diesel


Recently a customer of ours had a problem where their fuel supplier mistakenly unloaded 3000 gallons of ULSD#2 into their unleaded gasoline tank that contained about 700 gallons of gas.

When this happens there is very little that you can do beyond having the tank completely pumped out and then replacing the fuel.

Diesel in gasoline will generally cause the engine to either not start at all of run very poorly.

There is no acceptable amount of diesel in gasoline, although the engine will likely run if the amount of diesel is only 1 or 2% of total.

Gasoline in diesel is an equally serious problem. Even very small amounts (1%) can affect the flash point of the fuel significantly. This lowering of the fuels flash point can have catastrophic effects on the engine as it affects the fuels ignition and can also strip the lubricating ability of the diesel fuel, quickly damaging pumps and injectors.

In the past truck drivers would sometimes add a small amount of gasoline to their diesel fuel to try and prevent gelling. Many of these drivers feel that at long as the engine kept running it must be a good idea. It has never been a good idea for the reasons mentioned above and the fact that the engine kept running does not take into account increased wear and failures that happened days, weeks, or months later.

The addition of Ethanol to most gasoline available today simply makes using any amount of gasoline in diesel a very dangerous proposition.

In general, you should have this contaminated fuel taken away by a company licensed to handle it.

If you ever get gas in your diesel or diesel in your gas, the safest thing is to immediately without running the engine, have the tank drained and then replace with the correct fresh fuel.

Please let us know what you think and any experiences you may have had.

Diesel Doctor

Friday, February 13, 2009

Ethanol/Gasohol Problems with 2 Cycle Engines

Ethanol/Gasohol Problems with 2 Cycle Engines

2 Cycle gasoline engines have new challenges when used with gas containing Ethanol.

A 2 cycle engine gets all of its internal lubrication from a special oil mixed with the gasoline. This premix of oil and gasoline can have serious problems when Ethanol is added to the gasoline. Lubricating oil normally creates a bond with the metal components of the engines. The oil molecules create a boundary layer that protects the metal and reduces friction.

When Ethanol is present it will actually get between the oil and the metal, preventing the boundary layer from forming. This results in little or no protection for the moving components, and little or no reduction in friction forcing the engine to work harder, run hotter, and often to destroy itself.

Also many small engines have plastic carburetors, fuel tanks, and other components that Ethanol can soften or dry out which will cause them to fail. Many rubber fuel lines, o-rings, gaskets, and other parts can be delaminated or turned to a gelatin like material often failing very quickly.

Storing this type of equipment with Gasohol (Ethanol blended fuel) can lead to catastrophic failure in a relatively short time.

There are a very small number of additives that can reduce the negative characteristics of Ethanol in the gas.

We recommend that everyone operating 2 cycle engines switch to a pure synthetic two cycle oil.
The synthetic oil will provide the boundary layer lubrication in spite of the Ethanol.

Please add your comments to this post.

Wednesday, February 11, 2009

Oxygen (O2) Sensor and Catalytic Converter Failure Problems

Oxygen (O2) Sensor and Catalytic Converter Failure Problems


Oxygen sensors (O2) used in most of today's automotive gasoline engines are failing at an ever increasing rate.

There can be one to five sensors per vehicles and having them replaced can cost a consumer $100.00 to over $300.00 each.

Also, they rarely fail together, which means a customer can have one replaced and be back next month or even next week to have another done. This can go on and on until the customer takes their business elsewhere.

This can happen in brand new vehicles with low mileage or older high mileage ones.

Vehicles such as ambulances, police cars, and service equipment that have long idle periods and or a high percentage of idle time; and vehicles used for short trips are most susceptible to these problems.

Interestingly, most of these "failed" sensors are not actually defective or even worn out. What has happened, is that a small amount Ethanol in the gasoline (gasohol) will get past the piston rings and into the motor oil.

The Ethanol with agitation and heat liberates some of the phosphorus from the motor oil. This phosphorus is vaporized and sucked into the Positive Crankcase Ventilation (PCV) system and burned in the combustion chamber. This burned phosphorus on its way out the exhaust coats the O2 sensor(s) building up in layers.

This phosphorus coating acts as a insulation causing the sensor to react slower than normal. The engine computer reads this slow reaction time as a failure of the sensor forcing its replacement.

Note: This is the same material that coats catalytic converters causing them to go "cold" or cease to function.

Replacement of the sensor(s) is not the only option. It is possible to with a properly formulated chemical additive to clean up and remove this coating (both from O2 Sensors and Catalytic Converters) with a service procedure or with a tank additive.

The danger is that 98% of the additives on the market today are not properly formulated, and these poor quality products can actually make the problem worse, by permanently damaging the sensors or converters.

Remember; a well recognized brand name is no guarantee that it is a good product. Some of the biggest names are actually the poorest products.

It is also possible that with regular treatment, you can actually prevent these problems from ever happening in the first place.

Please comment on this and any of our other posts.

Friday, February 6, 2009

Ethanol Marine Lawsuit

Ethanol Marine Lawsuit

BP, Chevron, ConocoPhillips, Exxon-Mobil, Shell Oil, and Tower Energy are being sued by a Florida boat owner who is trying to make it a class action for problems allegedly (read likely) caused by the Ethanol that was added under rules issued by the state of Florida.

This after similar lawsuits in California.

In this case the Ethanol is said to have damaged the fiberglass fuel tanks on many boats. It is understood that Ethanol will soften, breakdown, and dissolve certain types of fiberglass. This liberated fiberglass can then be carried by the fuel into the engine, damaging fuel pumps, carburetors, fuel injectors, intake systems, intake and exhaust valves, and so on.

These tanks can be damaged to the point of affecting their ability to hold fuel, resulting in leaking and the potential for fire and or explosion.

Also, consider that as these tanks are damaged by the ethanol they can be weakened to the point that it can have a material effect on hull and deck integrity.

Removing and replacing tanks can easily range from thousands to tens of thousands of dollars often approaching and even exceeding the value of the boat.

Furthermore the damage to fuel systems and or engines can be equally catastrophic.

However, the more significant question may be, if a government entity forces a private corporation(s) to alter their product against their will to meet a legal regulation or specification (note: the oil companies went to court in an effort to overturn the requirements to add ethanol and they lost), are these companies then responsible for damages caused by these changes.

Ethanol is reported to damage rubber components like o-rings and hoses, plastic tanks and fuel system components, aluminum, brass, copper and other "soft" metals.

We should also consider the damage being done to snowmobiles, motorcycles, lawnmowers, all 2 cycle engines, all seasonal equipment, to say nothing of all the non-flex fuel automobiles and trucks being fueled with ethanol blended gasoline's.

No good has ever or will ever come from politicians playing chemist. You cannot legislate chemistry.

Who will be responsible for the hundreds of millions in damages being done every day by these fuels?

We would like to hear how you feel about this and other fuel, oil, and coolant related issues.

Monday, February 2, 2009

Phase Separation in Ethanol Blended Gasoline

Phase Separation in Ethanol Blended Gasoline’s


Phase Separation in Gasoline’s containing Ethanol is now a major problem for all users of gasoline.

Whether you use gasoline as a fleet operator or for your family car, classic car, boat, personal water-craft, motorcycle, snowmobile, ATV, RV, lawnmower, weed-whacker, generator, or any of the thousands of other types of equipment that use gasoline engines; you are being affected by Ethanol in your fuel.

Phase Separation describes what happens to gasoline containing Ethanol when water is present. When gasoline containing even small amounts of Ethanol comes in contact with water, either liquid or in the form of humidity; the Ethanol will pick-up and absorb some or all of that water. When it reaches a saturation point the Ethanol and water will Phase Separate, actually coming out of solution and forming two or three distinct layers in the tank.

Phase Separation is also temperature dependent. For example, E-10 can hold approximately .05% water at 60°F. To better understand the amount of water that we are talking about, picture 1 gallon of E-10 at 60°F. This gallon will hold approximately 3.8 teaspoons of water. However if the temperature drops to 20°F it can only hold about 2.8 teaspoons of water.

We recently were called to consult for a fleet where a fairly large number of vehicles were being regularly fueled from a single tank and about one-half the vehicles were stored inside and the other half were stored outside. After a night with a 30°F+ temperature drop, several of the vehicles stored outside developed problems with significant amounts of water found in the vehicle tanks. After checking the storage tank and finding no measurable water, they looked for other possible causes including sabotage. After looking at many possible causes this customer consulted with us and we were able to describe the Phase Separation through temperature change scenario and determine that this was the most likely cause of the problems.

Phase Separation can happen in an underground or an aboveground storage tank, a vehicle tank, a boat tank, in any type of equipment tank, and even in the gas can in your garage.

When this happens, you can have serious and even catastrophic engine problems, without warning.

When this Phase Separation occurs you will have an upper layer of gasoline with a milky layer of Ethanol and Water below it, and then in many cases a third layer of just water at the bottom.

If this happens and you try to start the engine you can have one or more of the following problems. If your fuel tank pick-up tube is in the water layer, most likely the engine will fail to start. If the engine is running and suddenly draws water you can have damage from thermal shock or hydro-lock. If the pick-up tube draws the Ethanol-Water mixture or just Ethanol you can have problems where the engine will operate in an extreme lean condition, which can cause significant damage or even catastrophic failure. If the pick-up tube draws the gasoline, it will operate very poorly due to lower octane that is the result of no longer having the Ethanol in the fuel.

Gasoline containing Ethanol provides further challenges and dangers for marine operators (Boaters) and other users of seasonal equipment such as motorcycles, personal water-craft, snowmobiles, ATV’s, RV’s, yard maintenance, generators, and other equipment.

Ethanol is a strong, aggressive solvent and will cause problems with rubber hoses, o-rings, seals, and gaskets. These problems are worse during extended storage when significant deterioration will take place. Hoses will delaminate, o-rings will soften and break down, and fuel system components made from certain types of plastics will either soften or become hard and brittle, eventually failing. Fuel system components made from brass, copper, and aluminum will oxidize to the point of failure.

Operators of boats with fiberglass fuel tanks built before 1993 can have actual structural failure as Ethanol will break down and pick-up some of the materials the tanks are made from. This causes two separate but equally serious problems. First the tanks can become so weakened that they can fail. In cases where the tank is part of the boats structure we have seen tanks become so weak that it is possible to collapse part of the deck just by walking on it. The second problem is that this material when dissolved from the fiberglass tank is carried through the fuel system and can cause damage to carburetors and fuel injectors and can actually get into the combustion chambers causing damaging deposits on valves and pistons. This material can be nearly impossible to remove without destroying the affected parts.

Two-Cycle engines have a special problem with Ethanol blended fuels. Two-Cycle engines function because the oil added to the fuel bonds to the engines metal surfaces and provides barrier lubrication to all the parts requiring lubrication. When Ethanol is added to the gasoline, it displaces the oil and forms a primary bond with the metal surfaces. This bond provides virtually no lubrication and can result in significantly increased wear and even catastrophic failure in a very short amount of time.

Until now the only preventative measures available to tank operators and end users was to try and make sure there was no water in the tank and that vents allowed a minimum amount of airborne water (humidity) into the tank.

Gasohol, E-10, E-20, and E-85 are the terms that refer to gasoline containing Ethanol. For example the most common fuel available today is E10. E-10 is 10% Ethanol and 90% gasoline, while E-85 is 85% Ethanol and 15% gasoline (Note: E-85 is actually E-70 in the winter in cold weather (Northern Tier) states.

Ethanol has less energy (as measure in Btu’s – British Thermal Units) per gallon than does regular unleaded gasoline. This means that the more Ethanol found in fuel the worse your fuel economy will be. You use more gallons of fuel containing Ethanol to go fewer miles.

This poor fuel economy is made worse by other EPA and State requirements for fuels to change seasonally. Until very recently we have used what is known as “Conventional” gasoline (CVG) in the winter and “Reformulated gasoline (RFG) in the summer. The theory is that the lower volatility of RFG will reduce the formation of green house gases. However RFG has lower Btu’s per gallon. RFG together with Ethanol results in a significant mileage penalty. My own vehicle drops about 2 miles per gallon or about 9% when using RFG with Ethanol.

For many years the refining industry used a chemical called MTBE to meet the oxygenate requirements set forth by the EPA. Generally refiners used 15% MTBE and 85% gasoline. However MTBE has now been virtually eliminated in the US due to its carcinogenic compounds and the huge potential problems caused by its pollution of as much as 75% of the ground water in the US and Canada.

This has left Ethanol as the primary additive to meet Federal and State oxygenate mandates.

Further the federal government currently subsidizes Ethanol with a $.51 per gallon tax credit that goes to the refiners or blenders. With E-10 this provides those refiners and or blenders with a $.051 per gallon subsidy on every gallon of gasoline that they sell.

In many cases we have seen gasoline containing more than 10% Ethanol. We test regularly and have seen fuel containing 12%, 13%, and even 14% Ethanol while the pump shows only 10%. Increasing the amount of Ethanol increases the refiner/blenders subsidy and profit while further lowering your fuel economy.

One more concern with Ethanol and RFG or Ethanol and CVG is that Ethanol when mixed with water; they readily form Gums in the fuel system much quicker than gasoline without Ethanol. These Gums coat fuel system components including filters, carburetors, injectors, throttle plates; and will then form varnish and carbon deposits in the intake, on valves, and in the combustion chamber. These deposits can coat sensors and plug catalytic converters.

The good news is that we now have products available to prevent and control Phase Separation and that we can dramatically reduce or eliminate most of the problems caused by Ethanol in Gasoline.

Because of all the problems with Ethanol Blended gasoline’s we will list some specific suggestions and recommendations on how to deal with and resolve many of these problems.

When Phase Separation occurs in fuel tank on a vehicle, boat or other piece of equipment, the tank should be completely drained. The tank should be refilled with good fuel and the fuel line purged prior to restarting the engine.

For Seasonal vehicles and equipment, e.g. boats, personal water-craft, motorcycles, classic cars, ATV’s, RV’s, lawn and garden equipment, gasoline powered generators, and so on, we recommend that you try to use conventional gasoline without Ethanol whenever possible and particularly prior to storage.

In ALL Two-Cycle gasoline engines where there is any possibility that you are using gasoline containing Ethanol we strongly suggest using a full synthetic two-cycle oil in the gas.

In bulk storage tanks where you believe phase separation may have occurred or where you are concerned it may happen. We suggest the use of a modified water finding paste such is made by the Kolor Kut Company. This paste starts out brown, if you dip the tank with a measuring stick with the paste and it turns yellow (even light or spotty yellow), you have significant water dissolved in the fuel, if the paste turns red you have free water.

If you have fuel that has Phase Separated and you have either two or three layers you should arrange to have the tank pumped from the bottom to remove the one or two bottom layers containing the water and or the Ethanol/Water mix. (Note: you should check again with the paste before the technician leaves to be certain that all the Water and Water/Ethanol has been completely removed). You do not need to remove the gasoline. Check with water finding paste after 24 hours. If no red or yellow present then add clean fuel to the tank to working capacity.

If you have specific questions, please contact me here or at: fuelschool@roadrunner.com