Showing posts with label Fuel. Show all posts
Showing posts with label Fuel. Show all posts

Monday, April 13, 2009

Gas to Liquids – Another Piece of the Puzzle

Gas to Liquids - Another Piece of the Puzzle


We have all seen pictures of oil wells both on land and platforms on the water where there is a constant flame burning off gases that contaminate the oil.

When you drill for oil you almost always get gas. If it is not considered cost effective to build a gas pipeline to transport the gas it is known as “Stranded Gas” and is flared off, wasting trillions of Btu’s of energy and releasing millions of tons of carbon into the atmosphere with absolutely no benefit.


Also in refining operations, there are gases released that are also flared off.

In many landfills you will see a tower used to flare off Methane generated by the continuous breakdown of organic materials.


One potential improvement to the world’s fuel pool could be the updating of the process used by Germany during World War II to alleviate its constant oil shortages. It was originally designed to convert coal to liquid fuels, however variations are capable of converting gases such as Natural Gas, Methane, Refinery Gases, and others to liquid fuels such as diesel and gasoline.


The use of Gas to Liquid Fuel Technology can help stretch our fossil fuel supplies and reduce CO2 released into the atmosphere.


More information available at: www.lcbamarketing.com


Post your comments, thoughts, ideas, and suggestions here.


Doctor Diesel

Copyright 2009 – William Richards

Friday, April 10, 2009

Nitrogen Enriched Gasolines – What Are They and What Do They Do

Nitrogen Enriched Gasolines – What Are They and What Do They Do

Shell Oil has recently begun advertising their Shell V-Power “Nitrogen Enriched” Gasoline.
Why would nitrogen improve the cleaning performance of gasoline detergent?

Here are some facts to consider:

1. The earth’s atmosphere is approximately 78% nitrogen
2. Nitrogen is an inert gas that is not combustible
3. Nitrogen atoms are larger than oxygen atoms
4. Nitrogen when combusted with fuel and Oxygen creates Nitrogen Oxides (NOx)
5. NOx when combined with Volatile Organic Compounds (VOC’s) creates petrochemical smog.

Shell claims that fusing (their term) nitrogen with their detergent creates a more stable, longer lasting detergent that will be more effective in preventing gunk (their term) deposits (my term) from building up on the valves and other combustion chamber areas.

It would seem to me that adding Nitrogen will make the combustion process less efficient and could possibly lower combustion temperatures. This would seem to be the opposite of the desired effect.

It would also seem that adding Nitrogen could raise the NOx emissions from the engine which would tend to increase smog production, again the opposite of the desired effect.

I definitely applaud the idea of raising detergent levels in all gasolines. This is a quick and inexpensive way to reduce emissions and improve fuel economy.

The whole Nitrogen thing is nothing other than another marketing ploy. Shell and many other refiners have attempted to convince the consumer that they are doing something unique and wonderful, when in reality they simply want to sell more and or charge more than their competitors.

Shell needs fewer “Cutesy” TV commercials and more science, or at least they should provide some documentation to support thier claims.

If you want to do the best thing for your gasoline powered vehicle, look for fuels containing “Top Tier” fuel additives used at the manufactures “Top Tier” levels or simply purchase and regularly use aftermarket “tank additives” that meet or exceed the “Top Tier’ requirements.
This together with proper maintenance will ensure peak performance and minimum emissions from your engine.

Please let me know what you think, post your comments, ideas, and suggestions here.

Diesel Doctor
Copyright 2009 – William Richards

Wednesday, April 8, 2009

Urea – More Things to Consider

Urea - More Things to Consider



I recently heard a new concern for those of you who will be storing and dispensing Urea for the 2010 diesel trucks. Urea is a very corrosive product that can quickly damage metal tanks, some types of seals, even dispensing nozzles.

Most fuel dispensing nozzles are made from nickel plated aluminum. When Urea is dispensed through such a nozzle, the nickel plating will react changing the Diesel Emission Fluid (DEF) to where it can cause damage to the SCR (Catalytic Converter) system.

The longer the Urea is in contact with the nozzle the more potentially damaging the fluid will become. What this means is that in high volume situations, the fluid will have limited contact with the nozzle and the likelihood of fluid being contaminated is significantly reduced. In lower volume situations where there may be extended periods of time between use, there is a higher likelihood of contaminating the fluid.

It may be desirable to go to a nozzle made of unplated metal or possibly even a composite material to prevent this contamination.

It is considered vital that a non-fuel nozzle be used to prevent the possibility of accidentally adding diesel to the DEF or DEF to the Diesel Fuel. Either mistake will likely cause rapid and catastrophic failure of the engine and or the SCR System.

In Europe a company called ElaFlex provides the defacto standard for AdBlue (Urea) nozzles that have a unique feature that prevents the AdBlue (Urea) from being added to the fuel tank.

ElaFlex has recently signed an agreement with OPW to provide these nozzles to the US and Canadian markets.

We will be providing a comprehensive list of suggestions on how to safely and cost effectively dispense Urea for your fleet operation.

Diesel Doctor

Copyright 2009 – William Richards

Wednesday, March 11, 2009

Biodiesel Cold Soak Filterability - ASTM D6751 Annex A1

New ASTM Biodiesel Test Specification for Cold Weather Operability



The American Society for Testing of Materials has recently added a new test requirement to the D6751 Biodiesel Specification.
This new requirement is referred to as ASTM 6217 or as Annex A1 of ASTM D6751– Cold Soak Filterability.

Cold Soak Filtration Analysis is defined as: The time in seconds that it takes for cold soaked biodiesel to pass through two 0.8 micron filters and the amount of particulate matter expressed in milligrams per liter (mg/l) collected on the filter.

What does this mean? When biodiesel is stored in temperatures below 40°F for extended periods of time, certain components will precipitate (fall) out of solution and fall to the bottom of the storage tank. This precipitate will build in a thickening layer at or near the tank bottom. In general the colder the temperature and the longer the biodiesel stays at a given temperature, the more material will fall out.

This material can very quickly plug filters and shut down engines, usually at the worst time.

What is this material? It can have to do with the feedstock from which the biodiesel is created. Certain feedstocks, particularly Used Cooking Oils (UCO), Waste Vegetable Oil (WVO), and Animal Fats (Tallow) will produce high levels of precipitate. The material can also be due to incomplete removal of glycerin during the transestrification process.

This new test is a positive step in making biodiesel a more consistent user friendly product.

Diesel Doctor
Copyright 2009© - William Richards

Thursday, March 5, 2009

Cetane Number – What it is and Why it’s so Important

Cetane Number – What it is and Why it’s so Important


Cooperative Fuel Research Engine (CFR)


Cetane is a measurement of a diesel fuel ignition and or combustion quality. This Cetane Number or CN is one of several components that determine the quality of diesel and biodiesel fuels. This number is used for light and middle distillate fuels. For heavy (residual) fuels Calculated Ignition Index (CII) and Calculated Carbon Aromaticity Index (CCAI) are used.

In some ways this measurement is similar to the Octane Ratings given to gasoline. In its simplest terms Cetane Number measures the delay between the start of fuel injection into the combustion chamber and the beginning of compression ignition (Auto-ignition).

In medium and high speed diesel engines (this all automotive and truck engines) fuel needs to have a CN between 38 and 55 to operate. In general the higher the CN number, the better for the engine and for emissions. However raising CN above 55 currently offers little if any benefit.

In the US the group setting the standards for CN is the American Society for Testing of Materials (ASTM) and currently the minimum is 40. While diesel engines will start and run with 40 CN fuel, they do not run as efficiently as they will at a higher number.

In Europe the European Union (EU) has systematically over several years raised the minimum from 38 to the current 51. This has allowed engine manufacturers to produce more efficient engines with lower emissions and better economy. Most fuel in the EU has a CN of 55 or even better.

Cetane Number is measured using a very expensive and arcane Cooperative Fuel Research (CFR) engine and a process that very complex.

You can also measure CN using an Ignition Quality Tester (IQT) which is somewhat less complex, but still quite costly.

There is a third measurement called Cetane Index (CI) that measures density and distillation range of the fuel and through a calculation provides a measurement. This method will calculate a reasonably accurate number for the refined diesel.

The problem is that today most diesel fuel uses additives to reach the desired Cetane Number and additives do not affect the density, thus the CI of a fuel containing additives is not accurate.

Some of you may have seen a device that looks like a battery fluid tester (a hydrometer). These devices are not capable of determining CN or CI with any accuracy.

You can raise CN by altering the refining process or through the use of Alkyl nitrates or di-tert-butyl peroxide additives. NOTE: Remember that additives do not raise CI.

Also, biodiesel, depending on the base oil from which it is derived has a natural Cetane Rating of 46 to as high as 60.

With the advent of Pilot or Multiple Pulse fuel injection, Cetane Number becomes more important than ever. The delay in auto-ignition (CN) affects the combustion timing, which has a significant effect on power output, fuel economy, and emissions.

Raising Cetane Number together with Improving Fuel Atomization is the fastest way to improve fuel economy and reduce emissions through the use of correctly formulated additives.

Please post your comments, ideas, and suggestions

More information at: http://www.lcbamarketing.com/ - Click on Fuel School Articles.

Diesel Doctor

Copyright 2009© - William Richards

Wednesday, March 4, 2009

Biodiesel and Cold Weather meet in Minnesota

Biodiesel and Cold Weather meet in Minnesota


The Minnesota Department of Agriculture recently released (February 15, 2009) a report to the legislature regarding the states mandated biodiesel program and the cold weather issues it has caused.

Starting in September 2005 Minnesota required that virtually all diesel fuel sold in the state contain at least 2% biodiesel. This level is supposed to be raised to 5% in 2009, 10% in 2012, and finally 20% in 2015.

This report by the Governors “Biodiesel Task Force” created in 2003 shows that there a number of significant problems with using biodiesel blends, particularly in areas subject to long periods of cold weather.

Some of the issues noted in the report:

· Discussion indicated at least fifteen cases of unusual filter plugging in commercial trucks this winter for which the cause had not been determined. Discussion of possible causes included engine manufacturers’ reduction of truck filter sizes (from 10 to15 microns down to 2 to 5 microns), paraffin from diesel, glycerin from biodiesel, water contamination, biotic contamination as a result of ultra-low sulfur diesel levels plus water contamination, and vehicle designs in which the fuel filter is located away from the engine.

· Discussion that existing cold flow test procedures are not sufficiently predictive of the
cold temperature performance of diesel fuel with or without biodiesel. ASTM International and other organizations at a national level must develop new test methods that are more predictive of the cold weather performance of diesel fuel and biodiesel blends.

· Variations in seasonal availability of fuel were also discussed, specifically routine shortages of diesel fuel at terminals in the fall leading to the practice of bulk plants and fleets buying and storing fuel in the late summer for use in the fall and early winter months when shortages of diesel are anticipated. Such stockpiling of B10 or higher could result in problems in above ground tanks.

· The suggestion was made that the Task Force discussions should freely address the availability and quality of all winter fuel in the state instead of being confined only to biodiesel. Given recent changes in the diesel industry, including biodiesel, low-sulfur diesel fuel and smaller fuel filter pore diameters, a wide range of issues regarding equipment and diesel fuel with and without biodiesel must be addressed.

Laboratory testing has indicated that blending with number one (#1) diesel at 50/50 rate produces results similar to treating with additives but the #1 fuel is at a far higher cost.

There is also a concern over whether the current testing (e.g. Cold Point (CP), Cold Filter Plug Point (CFPP), Pour Point (PP), Low Temperature Flow Test (LTFT)) done to assess cold weather operability characteristics of diesel fuel are adequate for testing biodiesel blends.

Unfortunately this discussion has been complicated by many factors including the change from Low Sulfur (LSD) to Ultra-Low Sulfur diesel (ULSD), that diesel fuel changes seasonally, the fact that biodiesel derived from different base oils have far different characteristics, that transportation and storage affect quality, and that materials will tend to precipitate out of biodiesel when it cold for extended periods of time.

To read the complete Minnesota Report to the Legislature please click here: Report to the Legislature February 2009

Please post your comments, questions, ideas, and thoughts.

Diesel Doctor


Copyright 2009© - William Richards

Monday, March 2, 2009

Gasohol – Ethanol Blended Gasoline – How to Prevent Storage Problems

Gasohol – Ethanol Blended Gasoline – How to Prevent Storage Problems
Image Courtesy of JME Sales


One of the biggest problems with gasohol (Ethanol blended Gasoline) is that it is extremely hygroscopic (the ability to attract water molecules from the surrounding environment and to hold them either through absorption or adsorption.

E-10 Gasohol (Gasoline containing 10% Ethanol) can hold up to 3.8 teaspoons of water in solution in the fuel. This water can lead to corrosion, poor economy, drivability problems, and to phase separation leading to other much more serious problems.

To combat this hygroscopic problem it is vital that storage tanks be purged of all water before any fuel containing Ethanol is added. The use of dispersant additives to deal with any residual water is also beneficial.

Storage tanks will pick up water from condensation of moisture in the air due to the daily changes in temperature. A large storage tank can actually generate anywhere from several ounces to as much as a gallon of water per day. Normally this water would settle to the bottom of the tank; however the Ethanol will pick it up, blend with it, and hold it in suspension.

The addition of a Desiccant type filter in the vent system will dramatically reduce or eliminate this condensation. While this idea is relatively new in the US many other countries mandate the use of these filters to prevent water problems.

It is also vital to regularly check the storage tank with water finding paste to be certain that there is no separated water on the tank bottom. Another advantage to water finding paste is that it will begin to slightly change color or in some cases small colored dots will begin to appear on the paste. This indicates that the fuel mixture is approaching the saturation point where phase separation will happen.

Note: Many of the electronic monitoring systems used for tank water detection may not register properly with Ethanol blended fuels. Also we have seen many instances where the fuel tank sending unit becomes saturated with water and stops functioning properly. When this happens the device will show the last good reading indefinitely.

It should be expected that tanks containing Ethanol will require a significantly higher level of maintenance than those holding regular gasoline or diesel.
For more information on this and other fuel related issues visit: http://www.lcbamarketing.com

Diesel Doctor
Copyright 2009© - William Richards

Monday, February 23, 2009

Asphaltene's and Plugged Fuel Filters

Asphaltenes and Plugged Fuel Filters


Asphaltenes in diesel fuels are becoming a much larger problem since the introduction of Ultra-Low Sulfur Diesel (ULSD - S-15) fuels.

There are actually several problems that have come together to cause the filter plugging black slime we so often see today.

Asphaltenes are highly polarized long chain components in crude and the heavier refined oils. Under certain circumstances these compounds associate themselves to form complex colloidal structures.

In Low Sulfur Diesel (LSD – S-500), High Sulfur Diesel (HSD – S-5000) and heating and bunker fuels the higher aromatic content of the fuel tends to discourage the formation of the complex colloidal structures limiting the problem.

However the EPA mandated reduction in aromatic content in ULSD has allowed this problem to happen sooner, more often, and in cooler temperatures than had been seen previously.

Asphaltenes agglomerate into an oily sludge. This problem is made worse when water is added to mix.

Petroleum and bio-derived fuels all hold water suspended in them, ULSD unfortunately holds approximately twice as much as the LSD and HSD fuels we had seen prior to June of 2006. Biodiesel (B100) can hold ten (10) times as much water as LSD and HSD, so even small amounts of biodiesel blended with diesel fuels dramatically increases the amount of dissolved water present.

Blending of fuels refined from different crude stocks further exacerbates this problem. Also, warmer temperatures in storage or due to the recirculation of fuel by the engine fuel system speeds the process and thickens the sludge.

Fuel that looks perfect going into a clean tank can develop tiny asphaltene droplets in a matter of hours when recirculation temperatures exceed 140°F (note: some newer engine fuel temperature as it exits the head exceeds 210°F). These pin-prick sized droplets can plug a 10 micron fuel filter in 3ooo to 4000 miles or less 50 hours of operation.

Many people mistakenly see this as a biological (bacteria and fungi) problem, however in the majority of cases the accelerated biological growth is the result of near perfect growing conditions that allows this rapid growth after the filter plugging asphaltene material has blocked the filter(s).

Keeping the water out helps, but the real solution is a thermal stability additive, a oxidative stability additive, together with a water dispersant.

Please comment with your experiences, suggestions, and or questions.
Diesel Doctor

Copyright 2009©

Wednesday, February 18, 2009

Fuel Storage Tank Maintenance - Keep It Clean

Keep It Clean - Fuel Storage Tank Maintenance


Most owners and operators of fuel storage tanks do not understand that maintenance is required to safely and successfully operate fuel storage tanks.

We constantly hear that customers have tanks that have never been cleaned and worse yet, that they believe that they never need to check to see if they have any problems.

This is made even worse by the information that some fuel suppliers tell their customers; for example that it OK to have some water at the bottom of the tank.

Well here is some real world information for everyone on this subject.

Fuel Storage Tanks all require regular maintenance. They are designed with the pickup tube 3" to 6" from the tank bottom so that small amounts of water, sediment and other contaminants have a space they can settle out so that they will not be drawn into the vehicle or equipment tanks as fuel is pumped out. This water and sediment material will accumulate over time and will cause problems if not removed periodically.

Some will tell you that 1/2" or 1" or even 2" of water is alright, and they are flat out wrong. Every time fuel is transferred into that tank it stirs up all that material and it may take as long as a day for it to settle out again. In the meantime every tank you dispense fuel into gets some of this material.

If you have a steel tank that water is corroding your tank from the inside out and putting rust particles into your fuel. We often find above ground tanks only a few years old that have rusted from the inside to the point of leaking from water and sludge in the tank.

Many customers have electronic monitoring systems that provide constant readings showing fuel level, water level, and leak detection. Some of these customers will see 1/2" or a few gallons of water on these system and ignore it because they have been told it is not important.

One problem we see time and again is that the sensors on these monitoring systems fail and they don't tell you when they fail, they just go on showing the last reading forever. This goes on until they start pumping water into their equipment at which point someone checks the tank with a stick and water finding paste only find that they actually have several inches of water.

We have told all of our customers for many years that even though you have spent several thousand dollars for a state of the art monitoring system, you still need to have some one check every tank at least once a month with a stick and water finding paste.

And this rule should be written next to the monitor and maybe next to where you store the measuring stick: "The Only Acceptable Amount of Water in Any Fuel Storage Tank is ZERO (0)".

For those of your with in-ground steel tanks, these tanks have Sacrificial Anodes attached to them. These Anodes take the weak electrical current generated by the tank and pass it into the ground through them. This prevents the tank metal from corroding, however the Anode "Sacrifices" itself in this process. The Anode is used up over a period of time. When the Anode is "used up" the tank begins to corrode often very quickly. Tank owners should periodically check these Anodes and Replace them as necessary. In many states this is part of the required maintenance and testing procedures, however you should know this and check to be certain it has been properly done.

Caps, Sumps, and Vents should all be checked for integrity and to see that they are doing their intended job.

Fuel Storage is a vital link in getting clean fresh fuel safely and efficiently into vehicles and equipment. You have a big investment in the tank, its installation, and in the fuel in it. It only makes sense to properly maintain and protect this investment.

Today we have new challenges with Ultra-Low Sulfur Diesel (ULSD), Biodiesel, Gasohol, Conventional Gasoline, and Reformulated Gasoline containing any amount of Ethanol. These fuel products hold much higher levels of water and are much more corrosive than fuels we have traditionally dealt with. They require much higher levels of monitoring and maintenance to have a safe and trouble free delivery system.

We are happy to offer analysis and suggestions on how to operate and maintain your systems.

Please post your comments or questions here.

Diesel Doctor

Saturday, February 14, 2009

Snake Oil - The Good, the Bad and the Really Ugly

Snake Oil
The Good, the Bad, and the Really Ugly

As someone who has worked in the chemical business for a number of years, I always cringe when someone uses a term like “Mechanic in a Bottle” or “Snake Oil” to define the chemical industry in general and fuel additives in particular.

Unfortunately many of the companies out there today with products that do little or nothing and even worse those that actually cause more harm than good have given the industry a black eye

This has made it a real challenge for those of us that have dedicated their businesses to producing real products, that solve real problems, and produce real measurable results.

So here I want to offer some things to consider when you look at a new chemical product.

When you hear about a product claiming a 15% to 20% or more improvement in fuel economy, you should be skeptical.

We were recently asked to analyze and report on a product that made claims of improving fuel mileage by 10% to 17%, increasing horsepower, reducing hydrocarbon emissions, providing additional lubricity, and several more.

The only claim to involve any real numbers in all of their literature is the mileage claim, so let’s start there.

Cleaning up Combustion Chamber, Fuel Injector, and Valve Carbon Deposits does make a real difference in engine operation and efficiency. You can improve starting, drivability, fuel economy, and emissions by cleaning up those deposits.

In a very dirty engine you might be able to make an 8% to 10% improvement in fuel economy. However if you look at a fleet operation or an average individual engine you are realistically looking at a 3% to 5% improvement.

Friday, February 13, 2009

Ethanol/Gasohol Problems with 2 Cycle Engines

Ethanol/Gasohol Problems with 2 Cycle Engines

2 Cycle gasoline engines have new challenges when used with gas containing Ethanol.

A 2 cycle engine gets all of its internal lubrication from a special oil mixed with the gasoline. This premix of oil and gasoline can have serious problems when Ethanol is added to the gasoline. Lubricating oil normally creates a bond with the metal components of the engines. The oil molecules create a boundary layer that protects the metal and reduces friction.

When Ethanol is present it will actually get between the oil and the metal, preventing the boundary layer from forming. This results in little or no protection for the moving components, and little or no reduction in friction forcing the engine to work harder, run hotter, and often to destroy itself.

Also many small engines have plastic carburetors, fuel tanks, and other components that Ethanol can soften or dry out which will cause them to fail. Many rubber fuel lines, o-rings, gaskets, and other parts can be delaminated or turned to a gelatin like material often failing very quickly.

Storing this type of equipment with Gasohol (Ethanol blended fuel) can lead to catastrophic failure in a relatively short time.

There are a very small number of additives that can reduce the negative characteristics of Ethanol in the gas.

We recommend that everyone operating 2 cycle engines switch to a pure synthetic two cycle oil.
The synthetic oil will provide the boundary layer lubrication in spite of the Ethanol.

Please add your comments to this post.

Thursday, February 12, 2009

Ultra-Low Sulfur Diesel Cold Weather Information

Ultra-Low Sulfur Diesel Fuel
Cold Weather Information

The Ultra-Low Sulfur Diesel (ULSD (S-15)) that we started to receive in mid 2006 has shown some dramatically different cold weather characteristics from the earlier High Sulfur (HSD (S-5000)) and Low Sulfur Fuels (LSD (S-500)).

These new characteristics including higher temperature gelling, wax dropout, icing, and difficulty in treating have in the first year and will continue into the foreseeable future to provide some significant challenges to distributors and end users during cold weather.

Due to these new characteristics users in areas of the US where they have not seen cold weather problems in the past, are now and will continue to see serious issues with gelling, wax dropout, and icing.

Here are the main issues known today:

Wax in diesel fuels – Paraffin wax is a natural and important part of diesel fuel. This wax provides several beneficial characteristics including high energy content (Btu’s), lubricity, stability, and viscosity. The negative characteristics mainly revolve around cold weather operation and include gelling and something new we refer to as wax dropout.

In HSD and LSD the wax characteristics were relatively well understood and consistent. For example the “Rule of Thumb” used for adding kerosene (#1 diesel, Jet A) to #2 fuel to lower Cold Filter Plug Point (CFPP) was that for every 10% kerosene added to #2 diesel you would lower CFPP by approximately 5°F. An example would be that a 50% blend would have improved CFPP by about 25°F.

However the new ULSD has had several important characteristics changed by the new refining processes. The catalytic cracking and hydrodesulfurization processes remove some of the wax, it alters the size and shape of the wax seed crystals in the fuel, lowers the aromatic content of the fuel, removes a significant amount of the Lubricity, and lowers the fuels ability to dissipate static electricity by as much as 100 times.

The result of this is that the ULSD fuel actually will gel at a higher temperature than the old LSD and HSD. This problem is made more difficult because we can no longer use regular kerosene (#1 diesel, Jet A) for cold weather blending. These fuels are considered High Sulfur and their use would cause the end fuel to have sulfur content higher than the allowable 15 ppm. So refiners have had to create an ULSD #1 specifically for winter blending purposes.

There are a number of problems with this new fuel. First, it is currently very expensive, ranging anywhere from $.30 to $1.00 more than regular kerosene, second it is not available in all areas, and third this new ULSD #1 is not as effective at lowering the Cloud Point (CP) and CFPP (gel point) of the fuel. For example; ULSD #2 when blended with 10% ULSD #1 will lower the CFPP by only 2°F or maybe 3°F. This means that a 50% blend would only improve CFPP by 10°F.

To make this problem even more difficult, many of the diesel fuel anti-gel additive products that have been on the market for last 5 to 30 years have little or no effect on ULSD. The change in fuel chemistry brought about by changes in the Catalytic Cracking processes and the addition of Hydrodesulfurization have rendered many of the most popular products nearly useless in ULSD.

There is a new cold weather problem that the industry has not adequately defined
as of today. We are calling this issue “Wax Dropout”. Wax Dropout occurs when diesel fuel is “cold saturated”. This where the fuel reaches a given temperature and stays at or below that temperature for a given period of time. This time period is usually between 48 and 72 hours or longer and the temperature can vary with different batches of fuel. This past winter we saw this problem at between 5°F and 10°F.

When the fuel gets to the Wax Dropout temperature, say for example 8°F and stays there for 48 to 72 hours, the wax will suddenly agglomerate and fall to the bottom of the container. This wax plugs filters and fuel lines until it is removed or until the fuel temperature is raised to a point where the fuel will reabsorb the wax.

Again there is a further complication, in that the “old” HSD and LSD wax would gradually start to reabsorb as the fuel temperature rose. With ULSD when wax dropout has occurred the wax does not begin to reabsorb until the fuel reaches fairly high temperatures, often above 40°F, 50°F or even higher. This can make the process of getting an engine with gelled fuel to run properly far more challenging than we have ever seen before.

In the fuel distribution and fleet operations businesses, we have relied on CFPP as
a measure of winter fuel quality for many years. CFPP is a fairly complicated test involving using a vacuum to draw a sample of fuel through a 45 um (micron) screen within a given period of time.

When the HSD and LSD were most prevalent and most fuel filters were 10 um there was a good correlation between CFPP and the temperature at which a standard fuel filter would plug. For example you could be relatively certain that a fuel testing for CFPP of -25°F would provide trouble free operation to -15°F to -20°F.

However the relationship is much different with ULSD. A ULSD fuel testing
-25°F CFPP might have filter plugging problems at between -5°F and -10°F. Also CFPP does not seem to be directly related to Wax Dropout. A fuel can test for
-15°F and still have Wax Dropout at 8°F.

Furthermore, OEM engine manufacturers have changed the media size of their fuel filters. Where 10 um has been almost an industry standard, we now see 7 um, 5 um, and even 2 um filters today. This throws the whole relationship between CFPP and winter operability out the window. For example fuel that is at the CP can have filter plugging problems with a 2 um fuel filter.

The industry has not yet agreed on or developed testing methods to measure cold weather operability with the new fuels and filters.

Until such time as the industry develops a test method for determining the relationship between CFPP, PP, Wax Dropout, and filter media size for ULSD, we suggest the following: For 10 um filters; Take the midpoint between PP and CFPP, for 7 um filters, take the midpoint between PP and CFPP, then take the midpoint between that number and the original CP, for 5 um and 2 um use the CP.

Water is more of a problem than ever before. Diesel and biodiesel fuels hold
water dissolved in them. The amount of water that ULSD is able to hold is greater than that of HSD or LSD. One of the characteristics of fuel is that its ability to hold water in solution diminishes as the temperature decreases. Fuel delivered at 70°F with 200 ppm of dissolved water will as the temperature drops begin to push that water out of the fuel into droplets. These droplets can be seen floating in the fuel and as temperatures reach and go below 32°F those droplets freeze becoming ice crystals.

As a result many of the cold weather problems where people believe they have fuel gelling problem are actually a fuel icing problem. If you have operability issues in temperatures above 0°F you should check to be sure that you aren’t dealing with ice.

Customers are regularly reporting situations where they have no water in storage tanks, no water in vehicle or equipment tanks, but they constantly have water in filters and separators. This is due to the dissolved water falling out of solution due to temperature changes.

Wednesday, February 11, 2009

Long Term Fuel Storage

Long Term Fuel Storage


STORAGE LIFE

Under normal storage conditions diesel fuel can be expected to stay in a useable condition for:

9-12 months or longer at an ambient of 70ºF.

6-12 months at an ambient temperature higher than 85ºF.

Note: There are many factors that will affect storage life, including but not limited to:

· Ambient temperature

· Temperature variation - the wider the range, the more likely you are to have problems

· Above-Ground versus In-Ground Storage

· Dissolved water content of the fuel

· Humidity

· Quality of the fuel when added to tank

· Condition of storage tank

· Materials used in the tank and fuel piping system

As diesel gets older, fine sediment and gums will form in the fuel brought about by a chemical reaction between components in the diesel fuel with oxygen from the air. The fine sediment and gums can block fuel filters, leading to fuel starvation and the engine stopping. Frequent filter changes are then required to keep the engine going. The gums and sediments do not burn completely in the engine and this incomplete combustion can lead to carbon and soot deposits on injectors and other combustion surfaces.

The expected life of a diesel fuel can be indicated by the oxidation stability test ASTM D2276. The test measures how much gum and sediment will be deposited after keeping the fuel at 120°C in the presence of oxygen for 16 hours. It roughly corresponds to one year storage at 25°C. A result of less than 20mg/L of sediment and gum after the test is considered acceptable for normal diesel.


ACCELERATED AGING

The aging process can be accelerated by the following conditions:

• Contact with zinc, copper or metal alloys containing them. These metals will quickly react with diesel fuel to form unstable compounds.

• The presence of water. Water allows the growth of fungus and bacteria, these produce natural by-products such as organic acids which make the fuel unstable.

• Exposure to high temperatures.

• Exposure to dust and dirt which contain trace elements that can destabilize the fuel, such as copper and zinc.

• Fuel composition. Some components in diesel fuel naturally age quickly.


PROLONGING THE STORAGE LIFE

Prolonging the storage life is achieved by removing or controlling the conditions described in the previous section. Important measures to take are as follows:

• Ensure that the fuel is not in contact with any surfaces containing zinc or copper or compounds containing those metals (e.g. brass). If those metals are present then a metal deactivator additive may help.

• Establish a regular fuel maintenance program to ensure that water and dirt is removed from storage tanks. This will also remove any chance for fungus to grow.

• Water should be drained from the storage tanks weekly. The frequency can be extended if the tank shows no tendency to collect water but should be done at least monthly.

• Tanks should be kept full to reduce the space for water to condense, maintaining tanks half full increases the water build up and promotes corrosion in the top half of the tank. Most water will come from condensation as the tank breathes. The rate at which water collects will depend on local climate and will be higher in hot humid coastal areas.

• Tanks if possible should have a well defined low point where water will collect and can be drained. For example, cone down bottoms.

• Establish a system for filtering the contents of the main storage tank through a recirculating filter system. This can be made automatic and will reduce the potential for problems by removing sediment and gums. The filters should be checked and changed at regular intervals. When the filter change interval reaches a certain frequency then the fuel should be changed over.

• Tanks should be emptied and cleaned at least once every 10 years, or more frequently if there is a major contamination.

• Ensure that the fuel supplied conforms to a recognized specification to ensure the fuel matches the winter cloud point for the area to avoid filter blocking by wax drop out in cold weather.

• Always purchase fuel to replenish stocks in the winter season November - March. This will help to ensure that the fuel will not cause wax problems whatever season it is used.

• Obtain assurances from the supplier that all components are fully refined to promote stability.

• Establish a monitoring program whereby samples are taken at regular intervals to monitor the condition of the fuel. The samples can be examined at the site visually for evidence of haziness, sediment, darkening or sent to a laboratory for testing.

• Regularly turn the fuel over. If possible, plan the fuel usage so that it will all be used within 1-5 years and replaced with fresh fuel.


ADDITIVES TO IMPROVE STORAGE LIFE

The following additives can improve fuel storage life:

• Metal deactivators. These work by stopping copper, zinc and other reactive metals from reacting with the fuel.

• Fungicides/Biocides. These work by stopping fungus and bacteria from growing in the fuel and so prolong the life of the fuel. They are only effective on fungus and bacteria and will not stop other oxidation reactions from taking place. They are normally active at the water fuel interface where the fungus and bacteria grow. If fungus is present then a kill dose is required. Otherwise a maintenance dose is used to stop fungus growing.

The disadvantages of biocides are:

• Handling and mixing is hazardous because they are poisons.

• When using a kill dose, it is important to remember that killing the fungus can lead to a buildup of dead matter which will block filters and also cause the fuel to oxidize.

• Ideally, the fungus should be killed and then the tank emptied and drained out.

• Maintenance doses are effective but no more so than regular water draining and or the use of a Water Dispersant.

• Disposal of water bottoms requires special handling with due regard to the environment.

• Anti-Oxidants. These work by stopping the oxidation processes from taking place. They prevent the fuel oxidizing and reduce the formation of sediment and gum.

As always, your questions and comments are welcomed and encouraged

Oxygen (O2) Sensor and Catalytic Converter Failure Problems

Oxygen (O2) Sensor and Catalytic Converter Failure Problems


Oxygen sensors (O2) used in most of today's automotive gasoline engines are failing at an ever increasing rate.

There can be one to five sensors per vehicles and having them replaced can cost a consumer $100.00 to over $300.00 each.

Also, they rarely fail together, which means a customer can have one replaced and be back next month or even next week to have another done. This can go on and on until the customer takes their business elsewhere.

This can happen in brand new vehicles with low mileage or older high mileage ones.

Vehicles such as ambulances, police cars, and service equipment that have long idle periods and or a high percentage of idle time; and vehicles used for short trips are most susceptible to these problems.

Interestingly, most of these "failed" sensors are not actually defective or even worn out. What has happened, is that a small amount Ethanol in the gasoline (gasohol) will get past the piston rings and into the motor oil.

The Ethanol with agitation and heat liberates some of the phosphorus from the motor oil. This phosphorus is vaporized and sucked into the Positive Crankcase Ventilation (PCV) system and burned in the combustion chamber. This burned phosphorus on its way out the exhaust coats the O2 sensor(s) building up in layers.

This phosphorus coating acts as a insulation causing the sensor to react slower than normal. The engine computer reads this slow reaction time as a failure of the sensor forcing its replacement.

Note: This is the same material that coats catalytic converters causing them to go "cold" or cease to function.

Replacement of the sensor(s) is not the only option. It is possible to with a properly formulated chemical additive to clean up and remove this coating (both from O2 Sensors and Catalytic Converters) with a service procedure or with a tank additive.

The danger is that 98% of the additives on the market today are not properly formulated, and these poor quality products can actually make the problem worse, by permanently damaging the sensors or converters.

Remember; a well recognized brand name is no guarantee that it is a good product. Some of the biggest names are actually the poorest products.

It is also possible that with regular treatment, you can actually prevent these problems from ever happening in the first place.

Please comment on this and any of our other posts.

Tuesday, February 10, 2009

Fuel and Water - They Don't Go Together

Fuel and Water

They don't mix and you shouldn't try to make them.


One of the more interesting characteristics that is shared by diesel, biodiesel, gasoline, and gasohol is that all these fuels are hygroscopic.

Hygroscopy is the ability of a substance to attract water molecules from the surrounding environment through either absorption or adsorption.

Some examples of this phenomenon are that Ultra-Low Sulfur Diesel (ULSD) will hold approximately 2/10 of 1% dissolved water. This may not sound like much, but if you do the numbers they show that 2/10 of 1% equals 2 gallons of water dissolved in 1000 gallons of fuel. If you work backwards, that would equal 1 gallon of water in 500 gallons of fuel, or 1 quart (32 ozs.), in 125 gallons, or 1 pint (16 ozs.), in 62.5 gallons, down to about 8 ozs. in a 30 gallon tank.

That much water can cause severe corrosion of fuel system components such as injectors, pumps, connectors, and even metal fuel tanks.

That level of water speeds the oxidation and chemical breakdown of the fuel.

That level of water is enough to encourage the growth of bacteria and fungi.

One of the most insidious characteristics of water dissolved in fuel is that the fuels ability to hold water is dependent on temperature. Simply put the warmer the fuel (up to a point) the more water it hold.

What often happens is that fuel stored for example at 60°F will absorb that 2/10% water then as the fuel in a vehicle gets colder more and more of that water is pushed out of the fuel becoming liquid water droplets.

These droplets can collect in filters and if the temperature drops below 32°F those droplets turn to ice crystals quickly plugging filters and causing other problems.

Fuel at 28°F can hold approximately 1/2 as much water as fuel at 60°F.

This means that you can have clear fuel with no liquid water at 60°F and if the temperature drops sufficiently, you can have large amounts of free water suddenly appear as the temperature drops.

To make matters worse biodiesel can pickup and hold 10 times as much water as ULSD. So adding 2% or 5% biodiesel to regular diesel can dramatically increase the level of dissolved water.

Gasoline containing Ethanol suffers the same problem.

A 10% Ethanol blend can hold 3.8 teaspoons of dissolved water at 60°F.

However if more water is added or if the temperature drops significantly this fuel suffers a problem called "Phase Separation".

In Phase Separation the dissolved (or liquid) water binds to the Ethanol and this Water/Ethanol mixture will drop out of the fuel.

This has a series of negative affects on the fuel quality and can have catastrophic effects on engines.

We will discuss more about this later.

We look forward to your comments and questions.

Root Cause Failure Analysis

Root Cause Failure Analysis
Diesel fuel has been identified by at least one OEM as a Root Cause of Engine Fuel System (pump and injector), EGR, EGR Cooler, Sensor, and Turbocharger failures.

Ford Motor Company recently issued a new TSB (Technical Service Bulletin) regarding vehicles using the 6.0 Liter PowerStroke engine.

TSB 08-2-7 stating that “Some vehicles with a 6.0L diesel engine may exhibit white smoke, black smoke, lack of power, exhaust odor, surges, or no start as a result of excessive coking deposits (un-combusted or incompletely combusted hydrocarbons). The root cause of the coking must be corrected or the coking may reoccur”.

They further state: “Coking deposits are generally un-combusted or incompletely combusted hydrocarbons and can form on system components such as the EGR Valve, EGR Cooler, EBP Sensor, EBP Tube, Intake Manifold, Turbo Charger, Catalytic Converter, and EGR Throttle Plate”.

“Un-combusted deposits can be linked to delayed combustion events. Delayed combustion events can be a function of hard to ignite elements (poor quality fuel, excessive fuel, engine oil, or excessive exhaust gas recirculation) in the combustion chamber or a delayed injection event (calibration, wire chafe, injector mechanical issue (Sticktion)).

“Un-combusted fuel is usually evident as a fuel scented white exhaust smoke. Un-combusted fuel may create coking which impairs system functionality eventually leading to black exhaust smoke/poorly combusted fuel”.

In situations where injectors have built up carbon deposits to the point of not being able to properly atomize the fuel, or EGR Valves that have coked or “carboned” up to the point of no longer being able to regulate the Exhaust gas Recirculation, or EGR Coolers that have plugged, to Turbochargers coked to the point of no longer being able to vary their geometry; common practice has been to replace very expensive parts.

Later some companies developed systems to “flush” the EGR’s and Coolers. Flushing will temporarily improve the operation of the engine, however this type of repair lasts only a short time and the initial problems usually reoccurs.

Oftentimes the same parts are replaced many times and then you have the problem where the one part that is not functioning correctly causes other related parts to fail.
In these instances it is vitally important to determine the root cause of these failures. There is a suggested method to do this:

  1. Define the problem.

  2. Gather data/evidence.

  3. Ask why and identify the causal relationships associated with the defined problem.

  4. Identify which causes if removed or changed will prevent recurrence.

  5. Identify effective solutions that prevent recurrence, are within your control, meet your goals and objectives and do not cause other problems.
  6. Implement the recommendations.

  7. Observe the recommended solutions to ensure effectiveness.

Today the Root Cause of 80% to 85% of the diesel engine fuel system related problems is poor fuel quality and fuel characteristics.

In the case of the problems described above on the Ford 6.0L and most of the fuel system and related problems found with other diesel engines, the Root Cause of the Failure is poor fuel quality.
You can replace parts and flush till the cows come home and you will continue to have the same problems over and over and over again.

Note: Albert Einstein once described insanity as: “Doing the same thing over and over again and expecting different results”.

Ford has recommended the use of a Cetane Booster and Performance Improver to improve fuel quality and reduce coking and un-combusted fuel problems.

This is not a Ford only or PowerStroke only problem. Every engine manufacturer has to deal with these problems in one form or another.

Monday, February 9, 2009

UREA use in 2009 and 2010 Diesel Vehicles

Urea Use in 2009 Light Duty and 2010 Medium and Heavy Duty Diesels
Hold on, here comes the next big change in diesel engines. Starting with the automotive market in 2009 and then with virtually all of the medium and heavy duty diesel vehicles in the 2010 model year, diesel engined vehicles will require an additional fluid to operate.

These vehicles will require an “aqueous urea solution” as defined by ISO 22241-1 using test methods described in ISO 22241-2:2006. This is a solution of 32.5% Urea in deionized water.
This Urea solution is used as part of a Selective Catalytic Reduction (SCR) system to reduce the NOx emissions of diesel fueled engines.

These systems require that a tank of the Urea solution be installed on the vehicle. The Urea is meter injected into the exhaust stream after the turbocharger where the exhaust heat will convert it to ammonia which is then used by a special type of catalytic converter to significantly reduce the formation of NOx. This system will function as long as there is Urea available.

This is a complicated system with maintenance requirements, cold weather operability issues (Urea freezes), and quality concerns.

There is a wide ranging debate on what type of driver information systems are to be required, what will happen if the system runs out of the Urea solution, and where Urea will be available.

Sunday, February 8, 2009

Black Fuel Filters - Asphaltenes - Re-polymerization

Black Fuel Filters – Asphaltene Production and
Re-polymerization in ULSD Fuels
Have you seen filters that look like this.


There is a difficult new problem with ULSD fuels. Today most ULSD is derived using the process of catalytic cracking. This form of refining uses very high temperatures, high pressures, and chemicals known as catalysts to refine crude oils into various fractions including Ultra Low Sulfur Diesel. The fuels derived using these processes suffer from a wide range of problems including a lack of oxidative and thermal stability.

This lack of stability manifests itself in many ways including an increased ability to hold dissolved water, an increased negative reaction with oxygen, and a far greater inability to handle high temperatures over time. Different refining processes and catalysts can make these problems better or worse. It appears that certain refineries produce fuels which are far less stable than that of others.

Diesel engines recirculate fuel to lubricate and cool the fuel system and engine components, In the past fairly large volumes of fuel were recirculated and this tended to keep temperatures lower, generally in the 140°F to 160°F. Today some of the newer engines can heat that fuel to temperatures that can exceed 200°F or even 220°F.

When some catalytically derived fuel is exposed to temperatures above 100°F for extended periods of time such as when fuel is recirculated in a diesel engine, the catalytic process starts up again re-polymerizing parts of the fuel. This results in rapid deterioration and darkening of the fuel. In this process small droplets of asphaltenes (heavy oils) are formed.

When the fuel is again pumped from the tank, the fuel filters will pick up the tiny asphaltene droplets, agglomerating them until the filter or filters are plugged. This can happen in 3000 to 5000 miles with some instances of plugging in less than 1000 miles.

While there are additives that can add thermal and oxidative stability to fuels, they are not commonly used by refiners or fuel distributors. These additives are not found in most aftermarket additives.

Friday, February 6, 2009

Ethanol Marine Lawsuit

Ethanol Marine Lawsuit

BP, Chevron, ConocoPhillips, Exxon-Mobil, Shell Oil, and Tower Energy are being sued by a Florida boat owner who is trying to make it a class action for problems allegedly (read likely) caused by the Ethanol that was added under rules issued by the state of Florida.

This after similar lawsuits in California.

In this case the Ethanol is said to have damaged the fiberglass fuel tanks on many boats. It is understood that Ethanol will soften, breakdown, and dissolve certain types of fiberglass. This liberated fiberglass can then be carried by the fuel into the engine, damaging fuel pumps, carburetors, fuel injectors, intake systems, intake and exhaust valves, and so on.

These tanks can be damaged to the point of affecting their ability to hold fuel, resulting in leaking and the potential for fire and or explosion.

Also, consider that as these tanks are damaged by the ethanol they can be weakened to the point that it can have a material effect on hull and deck integrity.

Removing and replacing tanks can easily range from thousands to tens of thousands of dollars often approaching and even exceeding the value of the boat.

Furthermore the damage to fuel systems and or engines can be equally catastrophic.

However, the more significant question may be, if a government entity forces a private corporation(s) to alter their product against their will to meet a legal regulation or specification (note: the oil companies went to court in an effort to overturn the requirements to add ethanol and they lost), are these companies then responsible for damages caused by these changes.

Ethanol is reported to damage rubber components like o-rings and hoses, plastic tanks and fuel system components, aluminum, brass, copper and other "soft" metals.

We should also consider the damage being done to snowmobiles, motorcycles, lawnmowers, all 2 cycle engines, all seasonal equipment, to say nothing of all the non-flex fuel automobiles and trucks being fueled with ethanol blended gasoline's.

No good has ever or will ever come from politicians playing chemist. You cannot legislate chemistry.

Who will be responsible for the hundreds of millions in damages being done every day by these fuels?

We would like to hear how you feel about this and other fuel, oil, and coolant related issues.

New Cold Weather Problems with Biodiesel Identified

New Cold Weather Problems with Biodiesel Identified
The recent bout of very cold weather in the northern tier states has shown new issues with biodiesel blends containing as little as 2% biodiesel.

We are seeing a significant number of customers that are having problems with the filters on their diesel fuel dispensers.
In nearly every case the customers are receiving a B2 to B5 blend.

In most of these cases they are not having vehicle or equipment problems, but rather problems getting the fuel from the storage tank to the vehicle tank. The dispenser filters seem to plug anywhere from a few hours to a few days of operation.

These filters when opened contain what at first appears to be wax. However when analyzed this material appears to be a glycerin type material. If you then bottom sample the storage tank, you generally find a material that resembles cottage cheese. There is often a layer that starts at the tank bottom and can be several inches thick of this material.

When this layer reaches the level of the pickup tube it can very quickly plug the dispenser filter.

This issue has several variations and we have identified several potential causal factors.

  1. Fuel that has a high level of dissolved water. This high water content seems to be a significant factor in all of these cases.

  2. Fuel derived from animal fats (including plant / animal blends of biodiesel) seems to be a factor in these problems.

  3. Long periods (more than 72 hours) of temperatures below 32 °F (the longer it is cold and the colder the average temperature the greater the problem).
    Above ground versus in-ground fuel storage.

  4. Use of additives – Some help, some make things worse.
    CP, CFPP, PP of the diesel portion of the blended fuel.

  5. Quality of the blend procedure and temperature at which the fuel and biodiesel are blended.

  6. Storage period.


Another factor in the rapid plugging of these dispenser filters is that as filter media starts to plug the filter actually begins to reduce the micron size of the media so that the filter picks more and more material that is smaller and smaller.


Also consider that a diesel engine tends to heat the fuel during the recirculation process whereas a dispenser provides no heat.


We offer some suggestions for users experiencing these problems.


  1. If you have this problem today you can go to a dispenser filter with a large micron size. There are winter filters available from Cim-Tek with a cleanable 144 micron stainless steel mesh.

  2. You can have the tank pumped from the bottom to remove this material. Depending upon your tank size, you may need to remove 50 to as much as 300 gallons to eliminate this problem.

  3. You can add certain types of additives that will break this material down and return it to solution.

  4. You can add kerosene (Note: if you have Ultra-Low Sulfur Diesel, you MUST use Ultra-Low Sulfur Kerosene). ULSD Kerosene is very expensive and it can take a lot of it to resolve this problem.
    Ask for your next two or three loads of diesel to be delivered with no biodiesel.

  5. Ask for biodiesel blends derived only from plant base oils during the fall and winter months.

  6. Additization with the correct products can help to prevent these problems.
    If you have access to biodiesel that has been through a distillation process, you will have far less problems.


Please let us know about your experiences with these problems