Showing posts with label Biodiesel. Show all posts
Showing posts with label Biodiesel. Show all posts

Wednesday, April 8, 2009

Urea – More Things to Consider

Urea - More Things to Consider



I recently heard a new concern for those of you who will be storing and dispensing Urea for the 2010 diesel trucks. Urea is a very corrosive product that can quickly damage metal tanks, some types of seals, even dispensing nozzles.

Most fuel dispensing nozzles are made from nickel plated aluminum. When Urea is dispensed through such a nozzle, the nickel plating will react changing the Diesel Emission Fluid (DEF) to where it can cause damage to the SCR (Catalytic Converter) system.

The longer the Urea is in contact with the nozzle the more potentially damaging the fluid will become. What this means is that in high volume situations, the fluid will have limited contact with the nozzle and the likelihood of fluid being contaminated is significantly reduced. In lower volume situations where there may be extended periods of time between use, there is a higher likelihood of contaminating the fluid.

It may be desirable to go to a nozzle made of unplated metal or possibly even a composite material to prevent this contamination.

It is considered vital that a non-fuel nozzle be used to prevent the possibility of accidentally adding diesel to the DEF or DEF to the Diesel Fuel. Either mistake will likely cause rapid and catastrophic failure of the engine and or the SCR System.

In Europe a company called ElaFlex provides the defacto standard for AdBlue (Urea) nozzles that have a unique feature that prevents the AdBlue (Urea) from being added to the fuel tank.

ElaFlex has recently signed an agreement with OPW to provide these nozzles to the US and Canadian markets.

We will be providing a comprehensive list of suggestions on how to safely and cost effectively dispense Urea for your fleet operation.

Diesel Doctor

Copyright 2009 – William Richards

Monday, March 16, 2009

OPEC and the Price of Oil – March 15, 2009

OPEC and the Price of Oil – March 15, 2009


OPEC, at its meeting Sunday (March 15, 2009) in Vienna decided not to ask members to cut output any further. This decision will hold off any official changes until the next meeting in May.

As is normal for this group of market manipulators, they cannot agree on what to do or how to do it, so they create a press release that tries to convince the not too bright, that they are maintaining production levels to “help” with the worlds current economic problems.

Nothing could be further from reality or the truth. They did not cut production for a host of reasons, first and foremost is that many of their members are ignoring the previous reduction of 2.2 million barrels per day that supposedly took effect in December. Even by their numbers (which are far too generous) they are only getting 80% compliance from their members on those production limits.

Why you may ask are they unable to control production and force up prices? Well the biggest issue is that many of these OPEC Countries (Note: OPEC Countries theoretically control about 40% of the world’s oil) spend their petro-dollars as fast or even faster than they take them in. Venezuela needs oil to be about US$80.00 per barrel just to pay the bills.

Many of the Middle Eastern countries have gone on staggering spending sprees basically acting as socialist entities.

These countries temporarily import workers to do their dirty work, while their own citizens do less and less but keep getting ever growing government handouts to live on (this sounds vaguely like some western country I may have heard of).

They have spent hundreds of billions on infrastructure projects and other enticements to try and bring foreign businesses to their countries before the oil runs out (yes, it will run out).

However all of this has been based on cheap capital and the idea that oil would keep going up in price forever.

Well fast forward to today, There is more crude oil sitting in storage than at any time in history, the demand is off by more than 1 million barrels per day (Note: this is another manipulated number and the reality is that demand is off by two or even three times this number), the economy in the US and now the rest of the industrialized world is contracting and will likely do so for a year or more, before starting a slow, painful, and just plain ugly recovery, and it appears that there is at least a glimmer of hope that the world including the US will finally wake up and recognize that the way we have been using energy for the last 100 years is unsustainable and that we need to do things now, not is 20 years to fix the problems.

All of this leads me to some oversimplified conclusions on oil pricing over the next year or two. If there is reduced economic activity worldwide there will be less demand for oil. The oil inventories will likely continue to grow as OPEC and Russia will need to pump more and more to make up for the lower per barrel prices.

Right now there is a concerted effort to hold and try to push crude prices up. However to keep oil in storage costs a lot of money every day. At some point traders and speculators will decide that they cannot afford to pay $100,000.00 a day to park crude in a tanker because the price is not going up enough make it profitable. When this happens, we could see oil flood the markets at levels not seen since the 1970’s. This will then further exacerbate the problems of the oil producing countries who will try to pump even more.

Short of a war (not out of the question) or a cataclysmic natural disaster, it is hard to see crude oil going up significantly anytime soon.

Refiners and some marketers are likely to benefit as crude prices decline and more finished product becomes available. In some areas where there is tightly controlled distribution there may months or even years of high profitability due to reduction in cost followed more slowly by reduction in retail prices.

I have regrettably spent my life creating a carbon footprint of embarrassing proportions. I am now working on reducing not only my negative impact on the world, but on creating new and better ways for everyone to do the same without destroying their livelihoods or lifestyles.
Please join us in our efforts.
To read this and other articles on fuels, alternative fuels, oils, lubricants, and coolants, please go to: http://www.lcbamarketing.com/ and click on technical articles.

Please post your comments, thoughts, ideas, and suggestions here.

Diesel Doctor
Copyright 2009© - William Richards

Friday, March 13, 2009

Clean Coal – An Oxymoron or a Real Possibility?

Clean Coal – An Oxymoron or a Real Possibility?


Can coal be clean? We have all heard the condescending advertising, listened to the biased politicians, and been overwhelmed with huge amounts of conflicting “expert” opinion and research data from each side.

Let’s start with the basics, “What is coal?” Coal is a sedimentary rock made up mostly of carbon, with varying amounts of sulfur, oxygen, hydrogen, nitrogen, and lesser amounts of many contaminants including mercury and other poisonous compounds.

We believe coal is primarily made up of plant material that has partially degraded, compressed and through this pressure and with time and other geologic forces been transformed into the many forms of what we refer to as coal. Some of these forms are Peat, Lignite, Bituminous, Anthracite, and Graphite.

The process of photosynthesis converts carbon dioxide into carbon, the conversion of the dead plant matter into coal sequesters the carbon in the ground. If we look at this in a very big picture sense, coal is the energy of the sun converted and stored. When the coal is burned, that carbon is released in the form of carbon dioxide. This could be a manageable cycle, however what is happening today, is that millions of years worth of this stored sunlight bound up in the form of carbon is being released in a relatively short period of time. This rapid release has overloaded the systems (the worldwide environments) ability to convert the carbon dioxide back into some stored form.

What can we do about this problem? First we must burn (or otherwise convert) this coal as cleanly and efficiently as possible. Large scale coal gasification and burning to create electricity will create fewer more easily managed source of pollution. These very large sources can be more easily forced to the use technology needed to clean the exhaust stream coming from such a facility.

Next we need to develop ways to reuse or store the Carbon Dioxide (CO2). There are ideas that would pump this material back into the earth either as part of oil pumping operations or into decommissioned mines.

I believe that we need to consider alternatives that would use some significant part of this CO2 to grow Algae as part of a closed loop energy system (See previous article on the Richards Cycle) or some other photosynthetic process that would convert the CO2 back into a safe storable (or reusable) form.

Coal can also be converted into high quality liquid fuel s (gasoline and diesel) through several processes. If we can create a more earth-friendly method of doing this, we could significantly reduce our dependence on and need for imported oil.
While this is not a permanent solution, it would definitely give us a cushion while we develop alternative energy forms and strategies.

Whether or not Coal can ever be Clean, I don’t know. What I am certain of is that we can develop much cleaner, safer, and eco-friendly methods to mine and use this high quality domestic energy source.

Please post your comments, thoughts, ideas, and suggestions.
For more information, please visit: http://www.lcbamarketing.com and click on Technical Articles.

Diesel Doctor
Copyright 2009© - William Richards

Wednesday, March 11, 2009

Biodiesel Cold Soak Filterability - ASTM D6751 Annex A1

New ASTM Biodiesel Test Specification for Cold Weather Operability



The American Society for Testing of Materials has recently added a new test requirement to the D6751 Biodiesel Specification.
This new requirement is referred to as ASTM 6217 or as Annex A1 of ASTM D6751– Cold Soak Filterability.

Cold Soak Filtration Analysis is defined as: The time in seconds that it takes for cold soaked biodiesel to pass through two 0.8 micron filters and the amount of particulate matter expressed in milligrams per liter (mg/l) collected on the filter.

What does this mean? When biodiesel is stored in temperatures below 40°F for extended periods of time, certain components will precipitate (fall) out of solution and fall to the bottom of the storage tank. This precipitate will build in a thickening layer at or near the tank bottom. In general the colder the temperature and the longer the biodiesel stays at a given temperature, the more material will fall out.

This material can very quickly plug filters and shut down engines, usually at the worst time.

What is this material? It can have to do with the feedstock from which the biodiesel is created. Certain feedstocks, particularly Used Cooking Oils (UCO), Waste Vegetable Oil (WVO), and Animal Fats (Tallow) will produce high levels of precipitate. The material can also be due to incomplete removal of glycerin during the transestrification process.

This new test is a positive step in making biodiesel a more consistent user friendly product.

Diesel Doctor
Copyright 2009© - William Richards

Friday, March 6, 2009

Natural Gas as a Transportation Fuel – A Cautionary Note

Natural Gas as a Transportation Fuel – A Cautionary Note


Natural Gas is currently being promoted as a domestic clean, safe, and cheaper alternative to petroleum fuels.


Some thoughts for your consideration.


Natural Gas as domestic source of energy. The US currently imports approximately 16% of its natural gas. Some comes to us by pipeline and some in the form of LNG via ship. Increasing the use of natural gas to replace petroleum fuels simply shifts our imports from one product to another.


Currently the US uses approximately 22% of our natural gas to create electricity. This is a poor use of a valuable resource for a need that has many other fuel sources available. If this was replaced by wind, solar, nuclear, and a future renewable bio-source (see previous article: The Richards Cycle) you could eliminate our imports.


Natural Gas as a clean motor fuel. Compressed Natural Gas (CNG) and Liquefied Natural Gas (LNG) both reduce certain emissions however they are not as clean as some would have us believe. If you look the whole basket of emissions that come out of the exhaust on an internal combustion engine, a 2010 Selective Catalytic Reduction (SCR) Diesel engine actually is less polluting than an equivalent CNG or LNG engine.


While I believe you can safely use CNG and LNG, it requires more training and much greater diligence on the part of drivers and operators vehicles and fueling stations. It is important to remember that it can take far longer to fuel LNG and particularly CNG fueled equipment. This long fueling cycle can lead to lack of attention and added expense in fueling equipment.


Natural Gas as cheaper alternative. Many people incorrectly try to compare a gallon of diesel to a gallon of LNG or a gallon of CNG. While the price per gallon of the LNG and CNG may appear to be cheaper, you need to consider the energy in the gallon. For example a gallon of diesel contains approximately 139,000 Btu’s of energy, while a gallon of LNG contains about 73,500 Btu’s, and CNG works to about 34,750. In short it takes about 4 times the space to store an equivalent amount of CNG as compared to diesel.


The other concerns with vehicles powered by CNG or LNG are that they are far more expensive to purchase, for example a school bus built to run on CNG can be $30,000.00 to $40,000.00 more than its diesel counterpart.



Also when you purchase a vehicle powered by CNG or LNG you locked into one supplier for all fuel system and some engine components for ever. There is virtually no secondary supplier compatibility. You limit the range and usefulness of the vehicle due to limited ability to refuel that vehicle away from its domicile. Lastly, you have to be concerned about the value of those vehicles when it comes time to trade or sell them. In many cases this limited resale market can make a used vehicle worthless.


There is an important and growing place for alternative fuel vehicles and equipment. It takes visionary leaders with long term commitment and very deep pockets to make a change to this type of equipment successful.


You can get more information on this and other fuel related subjects at: http://www.lcbamarketing.com and click on Fuel School Articles.

Please comment here and share your thoughts, ideas, and suggestions.


Diesel Doctor



Copyright 2009© - William Richards

Thursday, March 5, 2009

Cetane Number – What it is and Why it’s so Important

Cetane Number – What it is and Why it’s so Important


Cooperative Fuel Research Engine (CFR)


Cetane is a measurement of a diesel fuel ignition and or combustion quality. This Cetane Number or CN is one of several components that determine the quality of diesel and biodiesel fuels. This number is used for light and middle distillate fuels. For heavy (residual) fuels Calculated Ignition Index (CII) and Calculated Carbon Aromaticity Index (CCAI) are used.

In some ways this measurement is similar to the Octane Ratings given to gasoline. In its simplest terms Cetane Number measures the delay between the start of fuel injection into the combustion chamber and the beginning of compression ignition (Auto-ignition).

In medium and high speed diesel engines (this all automotive and truck engines) fuel needs to have a CN between 38 and 55 to operate. In general the higher the CN number, the better for the engine and for emissions. However raising CN above 55 currently offers little if any benefit.

In the US the group setting the standards for CN is the American Society for Testing of Materials (ASTM) and currently the minimum is 40. While diesel engines will start and run with 40 CN fuel, they do not run as efficiently as they will at a higher number.

In Europe the European Union (EU) has systematically over several years raised the minimum from 38 to the current 51. This has allowed engine manufacturers to produce more efficient engines with lower emissions and better economy. Most fuel in the EU has a CN of 55 or even better.

Cetane Number is measured using a very expensive and arcane Cooperative Fuel Research (CFR) engine and a process that very complex.

You can also measure CN using an Ignition Quality Tester (IQT) which is somewhat less complex, but still quite costly.

There is a third measurement called Cetane Index (CI) that measures density and distillation range of the fuel and through a calculation provides a measurement. This method will calculate a reasonably accurate number for the refined diesel.

The problem is that today most diesel fuel uses additives to reach the desired Cetane Number and additives do not affect the density, thus the CI of a fuel containing additives is not accurate.

Some of you may have seen a device that looks like a battery fluid tester (a hydrometer). These devices are not capable of determining CN or CI with any accuracy.

You can raise CN by altering the refining process or through the use of Alkyl nitrates or di-tert-butyl peroxide additives. NOTE: Remember that additives do not raise CI.

Also, biodiesel, depending on the base oil from which it is derived has a natural Cetane Rating of 46 to as high as 60.

With the advent of Pilot or Multiple Pulse fuel injection, Cetane Number becomes more important than ever. The delay in auto-ignition (CN) affects the combustion timing, which has a significant effect on power output, fuel economy, and emissions.

Raising Cetane Number together with Improving Fuel Atomization is the fastest way to improve fuel economy and reduce emissions through the use of correctly formulated additives.

Please post your comments, ideas, and suggestions

More information at: http://www.lcbamarketing.com/ - Click on Fuel School Articles.

Diesel Doctor

Copyright 2009© - William Richards

Wednesday, March 4, 2009

Biodiesel and Cold Weather meet in Minnesota

Biodiesel and Cold Weather meet in Minnesota


The Minnesota Department of Agriculture recently released (February 15, 2009) a report to the legislature regarding the states mandated biodiesel program and the cold weather issues it has caused.

Starting in September 2005 Minnesota required that virtually all diesel fuel sold in the state contain at least 2% biodiesel. This level is supposed to be raised to 5% in 2009, 10% in 2012, and finally 20% in 2015.

This report by the Governors “Biodiesel Task Force” created in 2003 shows that there a number of significant problems with using biodiesel blends, particularly in areas subject to long periods of cold weather.

Some of the issues noted in the report:

· Discussion indicated at least fifteen cases of unusual filter plugging in commercial trucks this winter for which the cause had not been determined. Discussion of possible causes included engine manufacturers’ reduction of truck filter sizes (from 10 to15 microns down to 2 to 5 microns), paraffin from diesel, glycerin from biodiesel, water contamination, biotic contamination as a result of ultra-low sulfur diesel levels plus water contamination, and vehicle designs in which the fuel filter is located away from the engine.

· Discussion that existing cold flow test procedures are not sufficiently predictive of the
cold temperature performance of diesel fuel with or without biodiesel. ASTM International and other organizations at a national level must develop new test methods that are more predictive of the cold weather performance of diesel fuel and biodiesel blends.

· Variations in seasonal availability of fuel were also discussed, specifically routine shortages of diesel fuel at terminals in the fall leading to the practice of bulk plants and fleets buying and storing fuel in the late summer for use in the fall and early winter months when shortages of diesel are anticipated. Such stockpiling of B10 or higher could result in problems in above ground tanks.

· The suggestion was made that the Task Force discussions should freely address the availability and quality of all winter fuel in the state instead of being confined only to biodiesel. Given recent changes in the diesel industry, including biodiesel, low-sulfur diesel fuel and smaller fuel filter pore diameters, a wide range of issues regarding equipment and diesel fuel with and without biodiesel must be addressed.

Laboratory testing has indicated that blending with number one (#1) diesel at 50/50 rate produces results similar to treating with additives but the #1 fuel is at a far higher cost.

There is also a concern over whether the current testing (e.g. Cold Point (CP), Cold Filter Plug Point (CFPP), Pour Point (PP), Low Temperature Flow Test (LTFT)) done to assess cold weather operability characteristics of diesel fuel are adequate for testing biodiesel blends.

Unfortunately this discussion has been complicated by many factors including the change from Low Sulfur (LSD) to Ultra-Low Sulfur diesel (ULSD), that diesel fuel changes seasonally, the fact that biodiesel derived from different base oils have far different characteristics, that transportation and storage affect quality, and that materials will tend to precipitate out of biodiesel when it cold for extended periods of time.

To read the complete Minnesota Report to the Legislature please click here: Report to the Legislature February 2009

Please post your comments, questions, ideas, and thoughts.

Diesel Doctor


Copyright 2009© - William Richards

Tuesday, March 3, 2009

E-Diesel – A Fuel for the Future?

E-Diesel – A Fuel for the Future?

Image Courtesy of University Of Illinois


E-Diesel is a blend of Ethanol and Diesel Fuel together with a multifunctional additive package. E-diesel is typically a 7% to 15 % blend of Ethanol in #2 diesel fuel together with 2% to 5% of additive. Early on it was referred to as “Oxygenated Diesel”, now however; most call it E-Diesel.

E-diesel is popular in Brazil as they produce a large amount of Ethanol from biomass left over from growing and processing sugar cane. Brazil has a limited supply of domestic crude oil and this has given them a huge incentive to develop alternative fuels and their government has stepped up to the plate to make it happen.

As a result Brazil is today an energy independent country, something we should aspire to become.

E-diesel has not been popular in the US, although it has been tested in some large fleets here with mixed results.

However the problems with Ultra-Low Sulfur Diesel, with Biodiesel being forced into our diesel and the recent very high price of fuel (now temporarily better) have made this technology worth another look.

E-diesel has a number of negative characteristics, it is hygroscopic (soaking up huge amounts of water if allowed to do so), Ethanol lowers the flash point of the diesel, Ethanol destroys lubricity in the fuel, and Ethanol makes the fuel less stable.

The pluses are that it improves cold weather characteristics, lowers CO and NOx, potentially (when derived from cellulosic biomass) lowers cost of the finished fuel, and increases the amount of non-petroleum renewable fuel available.

E-diesel using Ethanol produced from Bagass (the parts leftover from making sugar from sugar cane) is winner. Ethanol made from corn is a loser, the yield is very low, and it affects human and animal feedstocks.

The biggest winner is if you make diesel fuel from algae and use the biomass left over to produce Cellulosic Ethanol which can be burned in boiler, added to gasoline, or added to diesel. It is possible that Ethanol produced in this manner could cost as little as $1.00 per gallon.

The potential of producing a high quality cellulosic Ethanol from biomass is a game changer.

Ethanol in fuels presents significant problems in many areas. However these problems can be overcome or managed through changes in the way we handle fuels and blending, changes in equipment using these fuels, and though the use of properly formulated additive packages.

For more information please go to: http://www.lcbamarketing.com

Please comment with thoughts, ideas, and suggestions.


Diesel Doctor

Copyright 2009© - William Richards

Wednesday, February 25, 2009

What Happens when Gasoline is Burned in an Engine

What happens when gasoline or other petroleum fuel is burned in an Engine?

Gasoline (or any petroleum fuel) is mostly carbon that when burned releases energy in the form of heat. This heat energy makes the engine run and allows it to do work.

The bad part of this process is that the carbon when burned is converted into Carbon Dioxide (CO2). Imagine that a gallon of gasoline weighs between 5.93 to 6.42 lbs (depending on type, temperature, blend and other factors) and as it is burned most of it is converted into CO2 weighing between 5 and 6 lbs per gallon.

If this CO2 was a visible solid, you would have to constantly plow the roads as it would build up like snow in a blizzard. But as it is an invisible gas that floats away, nobody pays any attention to it.


Now imagine that worldwide we burn 80,000,000+ barrels (3,486,000,000+ gallons) (Note: The US uses approximately 25,000,000+ barrels or 1,050,000,000+ gallons) of oil per day and 90% - 95% of that becomes CO2.

That’s 20,916,000,000+ lbs. (Twenty Billion, Nine Hundred Sixteen Million Pounds per Day) of CO2 per day, an incredible amount of carbon that we expect the atmosphere to magically absorb. Again if this was a visible solid, we would be buried in a matter of weeks.

Now, I am a proponent of diesel engines, if for no other reason that they are far more efficient than gasoline engines (30+%). If the portion of this fuel that is refined into gasoline was instead refined into diesel you would reduce that consumption by 30+%.

If you capture CO2 from the atmosphere or better yet from the source and use it to grow algae or other plants, you are using photosynthesis to sequester this carbon. If that biomass is then converted into a biofuel and burned in efficient manner you have formed a closed loop where you can nearly stop the increase of carbon released into the environment.

I believe that short of someone developing cold fusion, the development of algae oil biofuels is our best choice for continued use of liquid fuels. This technology could be made commercially viable in just a few years and produce a high quality oil that could be converted into diesel and other fuels for about $20.00 per barrel. Even if I am wrong by 100%, the cost would still be where the cost of crude is today (02/25/2009).

These are things we need to be thinking about. What’s your opinion?

Diesel Doctor

Copyright 2009©- William Richards

Tuesday, February 24, 2009

The Richards Cycle

The Richards Cycle™


The Richards Cycle™ is a renewable energy concept that combines existing and developing technologies to produce a high quality biodiesel fuel and electricity through a carbon neutral process. Additionally this process can absorb huge amounts of CO2 from other fossil fuel burning processes and plants.

In the Richards Cycle™ land not suitable for farming such a desert and high desert areas can be used for producing oil from Algae. Algae grown in high density greenhouses can produce as much as 100,000 gallons per acre per year. In this process tons of CO2 together with sunlight are converted through photosynthesis into Algae Oil.

You could theoretically place a coal burning power plant next to the greenhouses and pipe the CO2 emissions from the plant right into them where it would be absorbed immediately.
You can then transesterify and or refine the Algae Oil into high quality diesel or heating fuels. You can then use this fuel to generate power or pipe to markets all over the US as motor or heating fuel.


This fuel when burned in a state of the art power plant would be carbon neutral and would produce low cost power. Biodiesel derived from the Algae Oil can be made to burn cleaner than petroleum fuel and would be considered carbon neutral.






This method could produce a significant portion of the nation’s motor fuel, heating oil, industrial fuel oil, and can provide a way to produce an important amount of electrical energy through coal or oil fired power plants without a negative impact on CO2 emissions.


Because this method can be used in most climates, over most of the earth it provides a way to obtain reasonably priced biofuels for motor fuel, heating fuel, industrial fuel oil, and marine fuel oil without the need petroleum fuels.


For areas of the world that currently derive large percentages of their electrical energy from oil fired power plants and diesel powered generators, this provides a way for them to break their dependence on imported or low grade domestic oil.


This is the first viable sustainable renewable energy project that does not use up materials and land diverted from producing foodstuffs.


We encourage your comments, thoughts, and ideas.


Doctor Diesel



Copyright 2009© William R. Richards

Monday, February 23, 2009

Asphaltene's and Plugged Fuel Filters

Asphaltenes and Plugged Fuel Filters


Asphaltenes in diesel fuels are becoming a much larger problem since the introduction of Ultra-Low Sulfur Diesel (ULSD - S-15) fuels.

There are actually several problems that have come together to cause the filter plugging black slime we so often see today.

Asphaltenes are highly polarized long chain components in crude and the heavier refined oils. Under certain circumstances these compounds associate themselves to form complex colloidal structures.

In Low Sulfur Diesel (LSD – S-500), High Sulfur Diesel (HSD – S-5000) and heating and bunker fuels the higher aromatic content of the fuel tends to discourage the formation of the complex colloidal structures limiting the problem.

However the EPA mandated reduction in aromatic content in ULSD has allowed this problem to happen sooner, more often, and in cooler temperatures than had been seen previously.

Asphaltenes agglomerate into an oily sludge. This problem is made worse when water is added to mix.

Petroleum and bio-derived fuels all hold water suspended in them, ULSD unfortunately holds approximately twice as much as the LSD and HSD fuels we had seen prior to June of 2006. Biodiesel (B100) can hold ten (10) times as much water as LSD and HSD, so even small amounts of biodiesel blended with diesel fuels dramatically increases the amount of dissolved water present.

Blending of fuels refined from different crude stocks further exacerbates this problem. Also, warmer temperatures in storage or due to the recirculation of fuel by the engine fuel system speeds the process and thickens the sludge.

Fuel that looks perfect going into a clean tank can develop tiny asphaltene droplets in a matter of hours when recirculation temperatures exceed 140°F (note: some newer engine fuel temperature as it exits the head exceeds 210°F). These pin-prick sized droplets can plug a 10 micron fuel filter in 3ooo to 4000 miles or less 50 hours of operation.

Many people mistakenly see this as a biological (bacteria and fungi) problem, however in the majority of cases the accelerated biological growth is the result of near perfect growing conditions that allows this rapid growth after the filter plugging asphaltene material has blocked the filter(s).

Keeping the water out helps, but the real solution is a thermal stability additive, a oxidative stability additive, together with a water dispersant.

Please comment with your experiences, suggestions, and or questions.
Diesel Doctor

Copyright 2009©

Wednesday, February 18, 2009

Fuel Storage Tank Maintenance - Keep It Clean

Keep It Clean - Fuel Storage Tank Maintenance


Most owners and operators of fuel storage tanks do not understand that maintenance is required to safely and successfully operate fuel storage tanks.

We constantly hear that customers have tanks that have never been cleaned and worse yet, that they believe that they never need to check to see if they have any problems.

This is made even worse by the information that some fuel suppliers tell their customers; for example that it OK to have some water at the bottom of the tank.

Well here is some real world information for everyone on this subject.

Fuel Storage Tanks all require regular maintenance. They are designed with the pickup tube 3" to 6" from the tank bottom so that small amounts of water, sediment and other contaminants have a space they can settle out so that they will not be drawn into the vehicle or equipment tanks as fuel is pumped out. This water and sediment material will accumulate over time and will cause problems if not removed periodically.

Some will tell you that 1/2" or 1" or even 2" of water is alright, and they are flat out wrong. Every time fuel is transferred into that tank it stirs up all that material and it may take as long as a day for it to settle out again. In the meantime every tank you dispense fuel into gets some of this material.

If you have a steel tank that water is corroding your tank from the inside out and putting rust particles into your fuel. We often find above ground tanks only a few years old that have rusted from the inside to the point of leaking from water and sludge in the tank.

Many customers have electronic monitoring systems that provide constant readings showing fuel level, water level, and leak detection. Some of these customers will see 1/2" or a few gallons of water on these system and ignore it because they have been told it is not important.

One problem we see time and again is that the sensors on these monitoring systems fail and they don't tell you when they fail, they just go on showing the last reading forever. This goes on until they start pumping water into their equipment at which point someone checks the tank with a stick and water finding paste only find that they actually have several inches of water.

We have told all of our customers for many years that even though you have spent several thousand dollars for a state of the art monitoring system, you still need to have some one check every tank at least once a month with a stick and water finding paste.

And this rule should be written next to the monitor and maybe next to where you store the measuring stick: "The Only Acceptable Amount of Water in Any Fuel Storage Tank is ZERO (0)".

For those of your with in-ground steel tanks, these tanks have Sacrificial Anodes attached to them. These Anodes take the weak electrical current generated by the tank and pass it into the ground through them. This prevents the tank metal from corroding, however the Anode "Sacrifices" itself in this process. The Anode is used up over a period of time. When the Anode is "used up" the tank begins to corrode often very quickly. Tank owners should periodically check these Anodes and Replace them as necessary. In many states this is part of the required maintenance and testing procedures, however you should know this and check to be certain it has been properly done.

Caps, Sumps, and Vents should all be checked for integrity and to see that they are doing their intended job.

Fuel Storage is a vital link in getting clean fresh fuel safely and efficiently into vehicles and equipment. You have a big investment in the tank, its installation, and in the fuel in it. It only makes sense to properly maintain and protect this investment.

Today we have new challenges with Ultra-Low Sulfur Diesel (ULSD), Biodiesel, Gasohol, Conventional Gasoline, and Reformulated Gasoline containing any amount of Ethanol. These fuel products hold much higher levels of water and are much more corrosive than fuels we have traditionally dealt with. They require much higher levels of monitoring and maintenance to have a safe and trouble free delivery system.

We are happy to offer analysis and suggestions on how to operate and maintain your systems.

Please post your comments or questions here.

Diesel Doctor

Tuesday, February 17, 2009

Biodiesel from Algae - The future of Biofuels

Biodiesel from Algae - The future of Biofuels

Biodiesel From Algae is likely a long term solution to the problems related to declining crude oil production and ever increasing prices.

Biofuels derived from Algae produce an Algae Oil are considered high quality and can be converted to an excellent biofuel. While all the technology is not yet in place to produce fuel on a mass scale, we are able to see that this is the direction we need to heading.

If you look at yield as a measure of viability, an acre of corn can produce approximately 20-30 gallons of Ethanol or 1,680,000 to 2,520,000 Btu's (84,000 Btu's per gallon) of energy; biodiesel derived from Soybean Oil produces approximately 70 gallons per acre or about 9,100,000 Btu's (130,000 Btu's per gallon), whereas biodiesel derived from Algae can produce up to 100,000 gallons or 13,000,000,000 (yes that's 13 Billion) Btu's (130,000 Btu's per gallon) from a single acre of non-arable desert.

As an oversimplified example if you converted 7,786,000 acres to the production of Algae Oil and converted that to biodiesel you could meet all of the fuel needs for transportation in the US. Note: This is about 10% of the size of New Mexico.

While this is likely a long way off, I believe our government and others in private industry should be investing in developing this technology as quickly as possible.

This technology can also be used to soak up huge amounts of CO2 and it leaves behind a biomass suitable for animal feed and many other possibilities.

Below, is a YouTube CNN video that shows some of this technology and how it can work.



We would appreciate your comments, questions, and ideas.

Diesel Doctor

Monday, February 16, 2009

PACKARD DIESEL ENGINE: Model DR-980 - 1928

PACKARD DIESEL ENGINE: PACKARD MODEL DR-980 of 1928

Type - 4-stroke cycle diesel

Cylinders - 9-static radial configuration

Cooling - Air

Fuel injection - Directly into cylinders at a pressure of 6000 psi

Valves - Poppet type, one per cylinder

Ignition - Compression-glow plugs for starting -air compression 500 psi at 1000 F.

Fuel - Distillate or "furnace oil"

Horsepower - 225 at 1950 rpm

Bore and stroke - 4 13/.16 x 6 in.

Compression ratio - 16:1---maximum combustion pressure 1500 psi

Displacement - 982 cu in.

Weight - 510 lb without propeller hub

Weight-horsepower ratio - 2.26 lb hp

Where manufactured - U.S.A.

Fuel consumption - .46 lb per hp/hr at full speed

Fuel consumption - .40 lb per hp/hr at cruising

Oil consumption - .04 lb per hp/hr

Outside diameter - 45 - 11/16 in.Overall length - 36 - 3/4 in.

Optional accessories - Starter---Eclipse electric inertia; 6 volt

Generator -Eclipse type G-1; 6 volts. Special Series no. 7


The specifications from SMITHSONIAN ANNALS OF FLIGHT,

The First Airplane Diesel Engine Packard Model DR-980 of 1928

Robert B. Meyer 1964

Sunday, February 15, 2009

Accidental Mixing of Gasoline and Diesel

Accidental Mixing of Gasoline and Diesel


Recently a customer of ours had a problem where their fuel supplier mistakenly unloaded 3000 gallons of ULSD#2 into their unleaded gasoline tank that contained about 700 gallons of gas.

When this happens there is very little that you can do beyond having the tank completely pumped out and then replacing the fuel.

Diesel in gasoline will generally cause the engine to either not start at all of run very poorly.

There is no acceptable amount of diesel in gasoline, although the engine will likely run if the amount of diesel is only 1 or 2% of total.

Gasoline in diesel is an equally serious problem. Even very small amounts (1%) can affect the flash point of the fuel significantly. This lowering of the fuels flash point can have catastrophic effects on the engine as it affects the fuels ignition and can also strip the lubricating ability of the diesel fuel, quickly damaging pumps and injectors.

In the past truck drivers would sometimes add a small amount of gasoline to their diesel fuel to try and prevent gelling. Many of these drivers feel that at long as the engine kept running it must be a good idea. It has never been a good idea for the reasons mentioned above and the fact that the engine kept running does not take into account increased wear and failures that happened days, weeks, or months later.

The addition of Ethanol to most gasoline available today simply makes using any amount of gasoline in diesel a very dangerous proposition.

In general, you should have this contaminated fuel taken away by a company licensed to handle it.

If you ever get gas in your diesel or diesel in your gas, the safest thing is to immediately without running the engine, have the tank drained and then replace with the correct fresh fuel.

Please let us know what you think and any experiences you may have had.

Diesel Doctor

Thursday, February 12, 2009

Ultra-Low Sulfur Diesel Cold Weather Information

Ultra-Low Sulfur Diesel Fuel
Cold Weather Information

The Ultra-Low Sulfur Diesel (ULSD (S-15)) that we started to receive in mid 2006 has shown some dramatically different cold weather characteristics from the earlier High Sulfur (HSD (S-5000)) and Low Sulfur Fuels (LSD (S-500)).

These new characteristics including higher temperature gelling, wax dropout, icing, and difficulty in treating have in the first year and will continue into the foreseeable future to provide some significant challenges to distributors and end users during cold weather.

Due to these new characteristics users in areas of the US where they have not seen cold weather problems in the past, are now and will continue to see serious issues with gelling, wax dropout, and icing.

Here are the main issues known today:

Wax in diesel fuels – Paraffin wax is a natural and important part of diesel fuel. This wax provides several beneficial characteristics including high energy content (Btu’s), lubricity, stability, and viscosity. The negative characteristics mainly revolve around cold weather operation and include gelling and something new we refer to as wax dropout.

In HSD and LSD the wax characteristics were relatively well understood and consistent. For example the “Rule of Thumb” used for adding kerosene (#1 diesel, Jet A) to #2 fuel to lower Cold Filter Plug Point (CFPP) was that for every 10% kerosene added to #2 diesel you would lower CFPP by approximately 5°F. An example would be that a 50% blend would have improved CFPP by about 25°F.

However the new ULSD has had several important characteristics changed by the new refining processes. The catalytic cracking and hydrodesulfurization processes remove some of the wax, it alters the size and shape of the wax seed crystals in the fuel, lowers the aromatic content of the fuel, removes a significant amount of the Lubricity, and lowers the fuels ability to dissipate static electricity by as much as 100 times.

The result of this is that the ULSD fuel actually will gel at a higher temperature than the old LSD and HSD. This problem is made more difficult because we can no longer use regular kerosene (#1 diesel, Jet A) for cold weather blending. These fuels are considered High Sulfur and their use would cause the end fuel to have sulfur content higher than the allowable 15 ppm. So refiners have had to create an ULSD #1 specifically for winter blending purposes.

There are a number of problems with this new fuel. First, it is currently very expensive, ranging anywhere from $.30 to $1.00 more than regular kerosene, second it is not available in all areas, and third this new ULSD #1 is not as effective at lowering the Cloud Point (CP) and CFPP (gel point) of the fuel. For example; ULSD #2 when blended with 10% ULSD #1 will lower the CFPP by only 2°F or maybe 3°F. This means that a 50% blend would only improve CFPP by 10°F.

To make this problem even more difficult, many of the diesel fuel anti-gel additive products that have been on the market for last 5 to 30 years have little or no effect on ULSD. The change in fuel chemistry brought about by changes in the Catalytic Cracking processes and the addition of Hydrodesulfurization have rendered many of the most popular products nearly useless in ULSD.

There is a new cold weather problem that the industry has not adequately defined
as of today. We are calling this issue “Wax Dropout”. Wax Dropout occurs when diesel fuel is “cold saturated”. This where the fuel reaches a given temperature and stays at or below that temperature for a given period of time. This time period is usually between 48 and 72 hours or longer and the temperature can vary with different batches of fuel. This past winter we saw this problem at between 5°F and 10°F.

When the fuel gets to the Wax Dropout temperature, say for example 8°F and stays there for 48 to 72 hours, the wax will suddenly agglomerate and fall to the bottom of the container. This wax plugs filters and fuel lines until it is removed or until the fuel temperature is raised to a point where the fuel will reabsorb the wax.

Again there is a further complication, in that the “old” HSD and LSD wax would gradually start to reabsorb as the fuel temperature rose. With ULSD when wax dropout has occurred the wax does not begin to reabsorb until the fuel reaches fairly high temperatures, often above 40°F, 50°F or even higher. This can make the process of getting an engine with gelled fuel to run properly far more challenging than we have ever seen before.

In the fuel distribution and fleet operations businesses, we have relied on CFPP as
a measure of winter fuel quality for many years. CFPP is a fairly complicated test involving using a vacuum to draw a sample of fuel through a 45 um (micron) screen within a given period of time.

When the HSD and LSD were most prevalent and most fuel filters were 10 um there was a good correlation between CFPP and the temperature at which a standard fuel filter would plug. For example you could be relatively certain that a fuel testing for CFPP of -25°F would provide trouble free operation to -15°F to -20°F.

However the relationship is much different with ULSD. A ULSD fuel testing
-25°F CFPP might have filter plugging problems at between -5°F and -10°F. Also CFPP does not seem to be directly related to Wax Dropout. A fuel can test for
-15°F and still have Wax Dropout at 8°F.

Furthermore, OEM engine manufacturers have changed the media size of their fuel filters. Where 10 um has been almost an industry standard, we now see 7 um, 5 um, and even 2 um filters today. This throws the whole relationship between CFPP and winter operability out the window. For example fuel that is at the CP can have filter plugging problems with a 2 um fuel filter.

The industry has not yet agreed on or developed testing methods to measure cold weather operability with the new fuels and filters.

Until such time as the industry develops a test method for determining the relationship between CFPP, PP, Wax Dropout, and filter media size for ULSD, we suggest the following: For 10 um filters; Take the midpoint between PP and CFPP, for 7 um filters, take the midpoint between PP and CFPP, then take the midpoint between that number and the original CP, for 5 um and 2 um use the CP.

Water is more of a problem than ever before. Diesel and biodiesel fuels hold
water dissolved in them. The amount of water that ULSD is able to hold is greater than that of HSD or LSD. One of the characteristics of fuel is that its ability to hold water in solution diminishes as the temperature decreases. Fuel delivered at 70°F with 200 ppm of dissolved water will as the temperature drops begin to push that water out of the fuel into droplets. These droplets can be seen floating in the fuel and as temperatures reach and go below 32°F those droplets freeze becoming ice crystals.

As a result many of the cold weather problems where people believe they have fuel gelling problem are actually a fuel icing problem. If you have operability issues in temperatures above 0°F you should check to be sure that you aren’t dealing with ice.

Customers are regularly reporting situations where they have no water in storage tanks, no water in vehicle or equipment tanks, but they constantly have water in filters and separators. This is due to the dissolved water falling out of solution due to temperature changes.

Tuesday, February 10, 2009

Fuel and Water - They Don't Go Together

Fuel and Water

They don't mix and you shouldn't try to make them.


One of the more interesting characteristics that is shared by diesel, biodiesel, gasoline, and gasohol is that all these fuels are hygroscopic.

Hygroscopy is the ability of a substance to attract water molecules from the surrounding environment through either absorption or adsorption.

Some examples of this phenomenon are that Ultra-Low Sulfur Diesel (ULSD) will hold approximately 2/10 of 1% dissolved water. This may not sound like much, but if you do the numbers they show that 2/10 of 1% equals 2 gallons of water dissolved in 1000 gallons of fuel. If you work backwards, that would equal 1 gallon of water in 500 gallons of fuel, or 1 quart (32 ozs.), in 125 gallons, or 1 pint (16 ozs.), in 62.5 gallons, down to about 8 ozs. in a 30 gallon tank.

That much water can cause severe corrosion of fuel system components such as injectors, pumps, connectors, and even metal fuel tanks.

That level of water speeds the oxidation and chemical breakdown of the fuel.

That level of water is enough to encourage the growth of bacteria and fungi.

One of the most insidious characteristics of water dissolved in fuel is that the fuels ability to hold water is dependent on temperature. Simply put the warmer the fuel (up to a point) the more water it hold.

What often happens is that fuel stored for example at 60°F will absorb that 2/10% water then as the fuel in a vehicle gets colder more and more of that water is pushed out of the fuel becoming liquid water droplets.

These droplets can collect in filters and if the temperature drops below 32°F those droplets turn to ice crystals quickly plugging filters and causing other problems.

Fuel at 28°F can hold approximately 1/2 as much water as fuel at 60°F.

This means that you can have clear fuel with no liquid water at 60°F and if the temperature drops sufficiently, you can have large amounts of free water suddenly appear as the temperature drops.

To make matters worse biodiesel can pickup and hold 10 times as much water as ULSD. So adding 2% or 5% biodiesel to regular diesel can dramatically increase the level of dissolved water.

Gasoline containing Ethanol suffers the same problem.

A 10% Ethanol blend can hold 3.8 teaspoons of dissolved water at 60°F.

However if more water is added or if the temperature drops significantly this fuel suffers a problem called "Phase Separation".

In Phase Separation the dissolved (or liquid) water binds to the Ethanol and this Water/Ethanol mixture will drop out of the fuel.

This has a series of negative affects on the fuel quality and can have catastrophic effects on engines.

We will discuss more about this later.

We look forward to your comments and questions.

Friday, February 6, 2009

New Cold Weather Problems with Biodiesel Identified

New Cold Weather Problems with Biodiesel Identified
The recent bout of very cold weather in the northern tier states has shown new issues with biodiesel blends containing as little as 2% biodiesel.

We are seeing a significant number of customers that are having problems with the filters on their diesel fuel dispensers.
In nearly every case the customers are receiving a B2 to B5 blend.

In most of these cases they are not having vehicle or equipment problems, but rather problems getting the fuel from the storage tank to the vehicle tank. The dispenser filters seem to plug anywhere from a few hours to a few days of operation.

These filters when opened contain what at first appears to be wax. However when analyzed this material appears to be a glycerin type material. If you then bottom sample the storage tank, you generally find a material that resembles cottage cheese. There is often a layer that starts at the tank bottom and can be several inches thick of this material.

When this layer reaches the level of the pickup tube it can very quickly plug the dispenser filter.

This issue has several variations and we have identified several potential causal factors.

  1. Fuel that has a high level of dissolved water. This high water content seems to be a significant factor in all of these cases.

  2. Fuel derived from animal fats (including plant / animal blends of biodiesel) seems to be a factor in these problems.

  3. Long periods (more than 72 hours) of temperatures below 32 °F (the longer it is cold and the colder the average temperature the greater the problem).
    Above ground versus in-ground fuel storage.

  4. Use of additives – Some help, some make things worse.
    CP, CFPP, PP of the diesel portion of the blended fuel.

  5. Quality of the blend procedure and temperature at which the fuel and biodiesel are blended.

  6. Storage period.


Another factor in the rapid plugging of these dispenser filters is that as filter media starts to plug the filter actually begins to reduce the micron size of the media so that the filter picks more and more material that is smaller and smaller.


Also consider that a diesel engine tends to heat the fuel during the recirculation process whereas a dispenser provides no heat.


We offer some suggestions for users experiencing these problems.


  1. If you have this problem today you can go to a dispenser filter with a large micron size. There are winter filters available from Cim-Tek with a cleanable 144 micron stainless steel mesh.

  2. You can have the tank pumped from the bottom to remove this material. Depending upon your tank size, you may need to remove 50 to as much as 300 gallons to eliminate this problem.

  3. You can add certain types of additives that will break this material down and return it to solution.

  4. You can add kerosene (Note: if you have Ultra-Low Sulfur Diesel, you MUST use Ultra-Low Sulfur Kerosene). ULSD Kerosene is very expensive and it can take a lot of it to resolve this problem.
    Ask for your next two or three loads of diesel to be delivered with no biodiesel.

  5. Ask for biodiesel blends derived only from plant base oils during the fall and winter months.

  6. Additization with the correct products can help to prevent these problems.
    If you have access to biodiesel that has been through a distillation process, you will have far less problems.


Please let us know about your experiences with these problems

Thursday, February 5, 2009

Biodiesel Confusion New Labeling Requirements

Biodiesel Confusion

The diesel fuel/biodiesel market has recently gotten a lot more confusing. We now have another Federal agency involved in the diesel fuel marketplace.

The Federal Trade Commission (FTC) has now created labeling requirements for diesel, biodiesel, and biomass based diesel.

These requirements have wide ranging consequences for all diesel fuel users.

First, diesel fuel may now contain up to 5% biodiesel or biomass-based diesel with no retail labeling required as long as the blended product meets ASTM D975 (note: ASTM D975 is being changed to allow up 5% biodiesel/biomass-based diesel to be blended as part of a diesel fuel).

Second, there are (according to the FTC) now two types of biodiesel, the first is the one most people are familiar with, where a plant, seed or animal derived oil is through transestrification converted to a Methyl Ester that is defined by ASTM D6751 and commonly referred to as biodiesel. The other is known as “Biomass-based Diesel”, this a fuel derived from biomass that does not contain Methyl Esters (note: there currently is not an ASTM specification for this product).

Third, effective December 16th, 2008, all retail fuel pumps are subject to the following labeling requirements based on Section 205 of the Energy Independence and Security Act of 2007 (EISA): Fuel blends containing no more than five percent (5%) biodiesel or no more than five percent (5%) biomass-based diesel and that meet ASTM D975 require no label.

Fuel blends containing more than five percent (5%), but no more than twenty percent (20%) biodiesel require a dispenser label 3”w x 2.5”h with a Blue background and a Bxx reporting the exact percentage or “Between B5 and B20” statement.

Fuel blends containing more than twenty percent (20%) biodiesel require a dispenser label with a Blue background and a Bxx reporting the exact percentage or “Containing more than 20% biodiesel statement.

Biodiesel that is “neat” or B100 must be labeled as “B100 Biodiesel” and “Contains 100 percent Biodiesel” on a Blue background.

Fuel blends containing more than five percent (5%), but no more than twenty percent (20%) biomass-based diesel require a dispenser label 3”w x 2.5”h with an Orange background and text reporting the exact percentage or “Between 5% and 20% Biomass-based Diesel” text statement.
Fuel blends containing more than twenty percent (20%) biodiesel require a dispenser label with an Orange background and text reporting the exact percentage or “Containing more than 20% Biomass-based Diesel” statement.Biomass-based Diesel that is “neat” or 100% must be labeled as “100% Biomass-based Diesel” on an Orange background.



Note: You should visit the FTC website at: http://www.ftc.gov/ at look at: 16 CFR Part 306 - RIN #3084-AA45 for more complete information on these requirements.

What this means in the real world is that suppliers can now add up to 5% biodiesel in retail fuels without notification to customers.

If you want biodiesel and have done your homework on what is required to successfully and safely use this fuel you should note what you want as you order your fuel.

If you do not want any biodiesel you should issue a written purchase order to your supplier telling them exactly what you want, e.g. no biodiesel.
Note: under the new ASTM D975 spec, 5% is allowed.

Thursday, January 29, 2009

Biodiesel and Cold Weather Issues

We have recently seen a new cold weather problem related blended biodiesel fuels.
The problem has been seen with B5 and greater blends where the diesel portion has been treated with certain lubricity agents.
What is being seen is that when the stored fuel is cold (below 15F) for extended periods of time (generally 48 hours or more) the dispenser filters will plug with an orange colored material. When this fuel filter is removed and the fuel poured out into a container that will allow it to be viewed you see an orange cloud floating in the fuel. The colder it gets the more of this material is found in the filter.
This appears to be the result of the fuel becoming more viscous as it gets colder. As the fuel becomes thicker it will begin to reduce the pore size of the filter media. As the pore size gets smaller, the filter begins to filter out the lubricity additive and the filter will concentrate it until the restriction is such that little or no fuel will pass through the filter.
This is a separate issue from gelling. The fuel when tested can have a very good CFPP or LTFT number and still see this problem.
If anyone has seen this issue, please let me know and I can offer suggestions for how to deal with this problem.