Showing posts with label Algae. Show all posts
Showing posts with label Algae. Show all posts

Friday, March 13, 2009

Clean Coal – An Oxymoron or a Real Possibility?

Clean Coal – An Oxymoron or a Real Possibility?


Can coal be clean? We have all heard the condescending advertising, listened to the biased politicians, and been overwhelmed with huge amounts of conflicting “expert” opinion and research data from each side.

Let’s start with the basics, “What is coal?” Coal is a sedimentary rock made up mostly of carbon, with varying amounts of sulfur, oxygen, hydrogen, nitrogen, and lesser amounts of many contaminants including mercury and other poisonous compounds.

We believe coal is primarily made up of plant material that has partially degraded, compressed and through this pressure and with time and other geologic forces been transformed into the many forms of what we refer to as coal. Some of these forms are Peat, Lignite, Bituminous, Anthracite, and Graphite.

The process of photosynthesis converts carbon dioxide into carbon, the conversion of the dead plant matter into coal sequesters the carbon in the ground. If we look at this in a very big picture sense, coal is the energy of the sun converted and stored. When the coal is burned, that carbon is released in the form of carbon dioxide. This could be a manageable cycle, however what is happening today, is that millions of years worth of this stored sunlight bound up in the form of carbon is being released in a relatively short period of time. This rapid release has overloaded the systems (the worldwide environments) ability to convert the carbon dioxide back into some stored form.

What can we do about this problem? First we must burn (or otherwise convert) this coal as cleanly and efficiently as possible. Large scale coal gasification and burning to create electricity will create fewer more easily managed source of pollution. These very large sources can be more easily forced to the use technology needed to clean the exhaust stream coming from such a facility.

Next we need to develop ways to reuse or store the Carbon Dioxide (CO2). There are ideas that would pump this material back into the earth either as part of oil pumping operations or into decommissioned mines.

I believe that we need to consider alternatives that would use some significant part of this CO2 to grow Algae as part of a closed loop energy system (See previous article on the Richards Cycle) or some other photosynthetic process that would convert the CO2 back into a safe storable (or reusable) form.

Coal can also be converted into high quality liquid fuel s (gasoline and diesel) through several processes. If we can create a more earth-friendly method of doing this, we could significantly reduce our dependence on and need for imported oil.
While this is not a permanent solution, it would definitely give us a cushion while we develop alternative energy forms and strategies.

Whether or not Coal can ever be Clean, I don’t know. What I am certain of is that we can develop much cleaner, safer, and eco-friendly methods to mine and use this high quality domestic energy source.

Please post your comments, thoughts, ideas, and suggestions.
For more information, please visit: http://www.lcbamarketing.com and click on Technical Articles.

Diesel Doctor
Copyright 2009© - William Richards

Tuesday, March 3, 2009

E-Diesel – A Fuel for the Future?

E-Diesel – A Fuel for the Future?

Image Courtesy of University Of Illinois


E-Diesel is a blend of Ethanol and Diesel Fuel together with a multifunctional additive package. E-diesel is typically a 7% to 15 % blend of Ethanol in #2 diesel fuel together with 2% to 5% of additive. Early on it was referred to as “Oxygenated Diesel”, now however; most call it E-Diesel.

E-diesel is popular in Brazil as they produce a large amount of Ethanol from biomass left over from growing and processing sugar cane. Brazil has a limited supply of domestic crude oil and this has given them a huge incentive to develop alternative fuels and their government has stepped up to the plate to make it happen.

As a result Brazil is today an energy independent country, something we should aspire to become.

E-diesel has not been popular in the US, although it has been tested in some large fleets here with mixed results.

However the problems with Ultra-Low Sulfur Diesel, with Biodiesel being forced into our diesel and the recent very high price of fuel (now temporarily better) have made this technology worth another look.

E-diesel has a number of negative characteristics, it is hygroscopic (soaking up huge amounts of water if allowed to do so), Ethanol lowers the flash point of the diesel, Ethanol destroys lubricity in the fuel, and Ethanol makes the fuel less stable.

The pluses are that it improves cold weather characteristics, lowers CO and NOx, potentially (when derived from cellulosic biomass) lowers cost of the finished fuel, and increases the amount of non-petroleum renewable fuel available.

E-diesel using Ethanol produced from Bagass (the parts leftover from making sugar from sugar cane) is winner. Ethanol made from corn is a loser, the yield is very low, and it affects human and animal feedstocks.

The biggest winner is if you make diesel fuel from algae and use the biomass left over to produce Cellulosic Ethanol which can be burned in boiler, added to gasoline, or added to diesel. It is possible that Ethanol produced in this manner could cost as little as $1.00 per gallon.

The potential of producing a high quality cellulosic Ethanol from biomass is a game changer.

Ethanol in fuels presents significant problems in many areas. However these problems can be overcome or managed through changes in the way we handle fuels and blending, changes in equipment using these fuels, and though the use of properly formulated additive packages.

For more information please go to: http://www.lcbamarketing.com

Please comment with thoughts, ideas, and suggestions.


Diesel Doctor

Copyright 2009© - William Richards

Wednesday, February 25, 2009

What Happens when Gasoline is Burned in an Engine

What happens when gasoline or other petroleum fuel is burned in an Engine?

Gasoline (or any petroleum fuel) is mostly carbon that when burned releases energy in the form of heat. This heat energy makes the engine run and allows it to do work.

The bad part of this process is that the carbon when burned is converted into Carbon Dioxide (CO2). Imagine that a gallon of gasoline weighs between 5.93 to 6.42 lbs (depending on type, temperature, blend and other factors) and as it is burned most of it is converted into CO2 weighing between 5 and 6 lbs per gallon.

If this CO2 was a visible solid, you would have to constantly plow the roads as it would build up like snow in a blizzard. But as it is an invisible gas that floats away, nobody pays any attention to it.


Now imagine that worldwide we burn 80,000,000+ barrels (3,486,000,000+ gallons) (Note: The US uses approximately 25,000,000+ barrels or 1,050,000,000+ gallons) of oil per day and 90% - 95% of that becomes CO2.

That’s 20,916,000,000+ lbs. (Twenty Billion, Nine Hundred Sixteen Million Pounds per Day) of CO2 per day, an incredible amount of carbon that we expect the atmosphere to magically absorb. Again if this was a visible solid, we would be buried in a matter of weeks.

Now, I am a proponent of diesel engines, if for no other reason that they are far more efficient than gasoline engines (30+%). If the portion of this fuel that is refined into gasoline was instead refined into diesel you would reduce that consumption by 30+%.

If you capture CO2 from the atmosphere or better yet from the source and use it to grow algae or other plants, you are using photosynthesis to sequester this carbon. If that biomass is then converted into a biofuel and burned in efficient manner you have formed a closed loop where you can nearly stop the increase of carbon released into the environment.

I believe that short of someone developing cold fusion, the development of algae oil biofuels is our best choice for continued use of liquid fuels. This technology could be made commercially viable in just a few years and produce a high quality oil that could be converted into diesel and other fuels for about $20.00 per barrel. Even if I am wrong by 100%, the cost would still be where the cost of crude is today (02/25/2009).

These are things we need to be thinking about. What’s your opinion?

Diesel Doctor

Copyright 2009©- William Richards

Tuesday, February 24, 2009

The Richards Cycle

The Richards Cycle™


The Richards Cycle™ is a renewable energy concept that combines existing and developing technologies to produce a high quality biodiesel fuel and electricity through a carbon neutral process. Additionally this process can absorb huge amounts of CO2 from other fossil fuel burning processes and plants.

In the Richards Cycle™ land not suitable for farming such a desert and high desert areas can be used for producing oil from Algae. Algae grown in high density greenhouses can produce as much as 100,000 gallons per acre per year. In this process tons of CO2 together with sunlight are converted through photosynthesis into Algae Oil.

You could theoretically place a coal burning power plant next to the greenhouses and pipe the CO2 emissions from the plant right into them where it would be absorbed immediately.
You can then transesterify and or refine the Algae Oil into high quality diesel or heating fuels. You can then use this fuel to generate power or pipe to markets all over the US as motor or heating fuel.


This fuel when burned in a state of the art power plant would be carbon neutral and would produce low cost power. Biodiesel derived from the Algae Oil can be made to burn cleaner than petroleum fuel and would be considered carbon neutral.






This method could produce a significant portion of the nation’s motor fuel, heating oil, industrial fuel oil, and can provide a way to produce an important amount of electrical energy through coal or oil fired power plants without a negative impact on CO2 emissions.


Because this method can be used in most climates, over most of the earth it provides a way to obtain reasonably priced biofuels for motor fuel, heating fuel, industrial fuel oil, and marine fuel oil without the need petroleum fuels.


For areas of the world that currently derive large percentages of their electrical energy from oil fired power plants and diesel powered generators, this provides a way for them to break their dependence on imported or low grade domestic oil.


This is the first viable sustainable renewable energy project that does not use up materials and land diverted from producing foodstuffs.


We encourage your comments, thoughts, and ideas.


Doctor Diesel



Copyright 2009© William R. Richards

Tuesday, February 17, 2009

Biodiesel from Algae - The future of Biofuels

Biodiesel from Algae - The future of Biofuels

Biodiesel From Algae is likely a long term solution to the problems related to declining crude oil production and ever increasing prices.

Biofuels derived from Algae produce an Algae Oil are considered high quality and can be converted to an excellent biofuel. While all the technology is not yet in place to produce fuel on a mass scale, we are able to see that this is the direction we need to heading.

If you look at yield as a measure of viability, an acre of corn can produce approximately 20-30 gallons of Ethanol or 1,680,000 to 2,520,000 Btu's (84,000 Btu's per gallon) of energy; biodiesel derived from Soybean Oil produces approximately 70 gallons per acre or about 9,100,000 Btu's (130,000 Btu's per gallon), whereas biodiesel derived from Algae can produce up to 100,000 gallons or 13,000,000,000 (yes that's 13 Billion) Btu's (130,000 Btu's per gallon) from a single acre of non-arable desert.

As an oversimplified example if you converted 7,786,000 acres to the production of Algae Oil and converted that to biodiesel you could meet all of the fuel needs for transportation in the US. Note: This is about 10% of the size of New Mexico.

While this is likely a long way off, I believe our government and others in private industry should be investing in developing this technology as quickly as possible.

This technology can also be used to soak up huge amounts of CO2 and it leaves behind a biomass suitable for animal feed and many other possibilities.

Below, is a YouTube CNN video that shows some of this technology and how it can work.



We would appreciate your comments, questions, and ideas.

Diesel Doctor